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I. Introduction

I. INTRODUCTION

During the specification and design of most color-imaging systems, much attention is

given to the systemÕs ability to capture and preserve the required color information.

Measures of the accuracy of color reproduction often indicate the extent of deviation from

desired performance. Also important are limitations to the precision of the system,

exhibited by unwanted pixel-to-pixel variations. This image noise contributes to the

appearance of graininess and artifacts in viewed scenes, and impedes signal detection and

other image processing tasks. The architecture of a system and the consequent signal

processing can affect the extent and form of the stochastic error in a recorded or displayed

image. This image noise is rarely analyzed in terms of its physical origins and how it

propagates through various signal transformations. Such an analysis would be useful in

predicting the likely performance and the contribution of each stage to the final image noise.

Noise propagation with statistical descriptions of imaging mechanisms has most often

been modeled for monochrome imaging systems. Multichannel system analysis often

assumes simple additive sources, and ignores the effect of correlation between the noise

fluctuations in the signals. The results of more extensive error analysis, however, have

been reported in the related areas of spectrophotometry and colorimetry.

In the research reported here, the objective is to provide an analysis of common sources

of stochastic noise in multistage electronic-imaging systems, and how they contribute to the

final image noise characteristics. The approach will be to describe how the first two

statistical moments of the image noise are propagated. This analysis is applicable to both

trichromatic and multispectral image acquisition. For several common signal

transformations, the mean level and noise statistics will be described. This facilitates the

comparison of actual performance with that limited by fundamental signal-detection
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I. Introduction

mechanisms, such as available exposure the quantum efficiency of the detector. The effect

of the precision used for signal storage, i.e., quantization, is also analyzed and compared

with stochastic noise levels.

The above analysis is then applied to the task of spectral reconstruction, or estimation,

in the visible wavelength range. A CCD camera-based system is then used to capture

several multispectral images. The resultant image noise characteristics are compared with

performance predicted by the above theoretical analysis.

The objective of this dissertation research is to provide a statistical analysis of the noise

limitations to system performance that result from image acquisition and signal processing

in multispectral color systems. The general results are expressed in measurable

performance parameters that are familiar to the color and imaging science technical

communities. The specific objectives of the research are given below.

1. To develop an analysis of image-noise propagation that includes the following:

¥ electronic image acquisition noise model

¥ detector spectral sensitivity

¥ signal matrixing

¥ nonlinear signal transformations

2. To apply the above to the problem of spectral reconstruction, and subsequent 

colorimetric transformation.

3. To develop a model of the noise characteristics of a system using a CCD camera and 

filter set, based on a physical model of the noise characteristics of the CCD imager and 

signal processing.

4. To evaluate the noise characteristics of this multispectral camera system and compare 

2



I. Introduction

the results with those predicted by the above analysis.

5. To identify when and where signal quantization contributes significantly to image 

noise.

A. Why analyze image noise?

The development of communications systems in the last half-century has been aided by

the information theory framework, developed by Shannon (1948). He showed, for

example, how statistical models of both signal and noise could be used to identify

fundamental limits to the efficiency with which information could be encoded and

transmitted. Today, the influence of information theory in the design of imaging systems is

found not only in image compression, but also in the use of signal-to-noise measures.

These can indicate fundamental limits to imaging performance. These measures have been

most influential for applications where scene exposure is at a premium such as in medical

and astronomical applications (Felgett 1955, Linfoot 1961, Coleman 1977), but also for

general CCD image acquisition (Burns 1990), photography and laser printing (Beiser

1966, Burns 1987a).

Electronic imaging systems often combine various technologies, and a consistent

analysis of imaging performance aids in the matching of the requirements of each stage.

Since noise is a key image quality characteristic, analysis of its sources and how they

combine is an important tool. Specifically, if a physical model is available to describe the

signal and noise performance of a system in terms of design choices, it can be used as an

aid for component selection and system optimization. A useful analysis, therefore, should

predict imaging performance and quantify the effect of specific design parameters and

technology choices. The imaging characteristics of the acquisition step are particularly

important since they limit the image information available later for image processing and

3



I. Introduction

display.

The research reported here develops a general statistical analysis applicable to

multispectral image capture. Before describing the technical approach, a review of

multispectral imaging in the visible wavelength region is presented.

B. Multispectral imaging capture

In most color imaging systems, three different signal values, corresponding to three

wavelength weightings, are recorded or estimated for each location in a scene. For

example, a television camera, or photographic film records three signals associated with the

approximately red, green and blue intensities in the image. Colorimetry is based on the

trichromatic nature of human vision (Wyszecki and Stiles 1982), that makes it possible to

match a given object color with an appropriate optical mixture of three light sources for a

given viewing condition. For specific viewing conditions, if the three spectral sensitivities

of the capture stage are matched to the three emissions of the display (or spectral reflectance

of the print) stage, accurate color reproduction can be achieved for colors within the color

gamut of the display.

There are several color-imaging applications, however, where three image records are

insufficient to capture all the needed color information. If the spectral sensitivities available

do not correspond to those of human vision, or a linear combination of them, color

information will be lost. Some colors that are viewed as different, will be recorded as

having the same (3) signal values, and will therefore be indistinguishable at the image

display. This is referred to as metamerism. To alleviate this problem, missing spectral

information can be supplied by additional image records.

For most image printing and publishing applications, a reproduced image is viewed

4



I. Introduction

under different illumination than was used for original scene capture. To transform image

data to represent the same scene captured under a different illuminant, one needs a model of

the color image formation for all object colorants in the scene. This is practical if it is

known that the scene is, e.g., a page whose colors are formed by mixing a set of inks, or

photographic dyes. The transformation of the image between illuminants can take the form

of a polynomial model (Hung 1993) based on extensive measurements. Alternatively, an

analytical model that describes how the image colorants mix to form the color stimuli in the

scene (Allen 1980, Berns 1993) can be employed. In such models a reconstruction of the

spectral reflectance or transmittance curve is an intermediate step, whether explicit or

implied. If an accurate spectral model is unavailable then color reproduction is inaccurate,

e.g., when a purchased product does not ÔmatchÕ its reproduction in a printed catalogue. In

this case more complete information about the spectral reflectance of the product is needed

than is supplied by the three (although colorimetricly accurate) signals.

The archiving and conservation of artworks are other areas where both colorimetric and

multispectral image information are currently being used. This is being done for various

reasons, with varying technical requirements. The approaches include: photography (Miller

1995), spectrophotometry (Quindos et al. 1987, Grosjean et al. 1993), and electronic

image capture (Saunders 1989, Martinez et al. 1993). Martinez and Hamber (1989)

discuss the requirements for three applications: public access and galleries, university

study, and scientific/conservation work. They recommend both the required levels of color

and wavelength information, and spatial detail sampling for the above uses of image

archives.

Colorimetric and multispectral image information are also frequently used in remote

sensing (Juday 1979). Infrared information is often combined with the visible light record,
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I. Introduction

and displayed in pseudo-color. In astronomy, colorimetric data and knowledge of human

vision have been used to improve stellar observations. Since stars can be modelled as black

body sources their spectral emissions are governed by the Planck formula. Chollet and

Sanchez (1990), modeled the attenuation of the star emission by the atmosphere and

instrument optics. They then introduced the spectral sensitivity of the observer, including

the Purkinje phenomenon, to estimate the mean wavelength. This approach reduced

systematic error in the estimation of the magnitude of stars.

C. Spectral Sensitivities: Number and Shape

Various approaches to characterizing object spectral reflectances have been reported,

aimed at determining the number of required spectral image records. Several workers have

used statistical modeling to identify the fundamental characteristic spectra for various

classes of objects. Cohen found that four basis spectra could be combined to reconstruct,

or specify, a selection of Munsell colors (Cohen 1964). A subsequent study, however,

found up to eight were needed for a larger set (Kawata et al. 1987). More recent research

included a wide variety of natural and manufactured object spectra, and concluded that up

to seven basis vectors were needed to characterize some objects (Vrhel et al. 1994). Note

that the basis vectors that were identified do not necessarily correspond to physically

realizable detector-filter spectral sensitivities. However a set of spectral sensitivities that are

linear combinations of the eigenvectors could be used.

The shape of capture spectral sensitivity functions also can be addressed by starting

from the eigenvectors of the spectral covariance matrix. Chang and coworkers (1989) took

this approach and investigated the use of the first three Fourier basis functions. They

demonstrated that band-limited (slowly varying) spectra could be well reconstructed by a

wide variety of spectral sensitivity shapes. This should be expected, given that the first

6



I. Introduction

Fourier bases are associated with low-frequency signal components.

We can also treat the capture of color-image information as a spectral sampling problem

for a set of detectors with all-positive responses. For any sampled signal, there is an

inverse relationship between the sampling distance, and the detailed information that is

unambiguously captured. For a given imaging application, if it is necessary to differentiate

between samples containing rapid spectral fluctuations, then this requires a set of several

narrow-band capture spectral sensitivities.

Both human vision, and object spectral reflectance characteristics have been analyzed

for the required (or implied) spectral sampling. The characteristics of color vision were

described in terms a Modulation Sensitivity Functions (MSF) of spectral frequency,

analogous to the more commonly used Modulation Transfer Functions (MTF) of spatial

frequency (Benzschawel et al. 1986). Various color vision models were characterized in

terms of both their modulation and phase responses. The Fourier transforms of the CIE

color matching functions have also been calculated (Romero et al. 1992) to understand the

spectral sampling requirements of (trichromatic) color vision. Limiting frequencies of 0.02

cy/nm for x and z, and 0.05 cy/nm for y were estimated. It was concluded that spectral

sampling of 10-25 nm would be sufficient for colorimetric matching. This analysis,

however, overlooked the fact that the spectral bandwidth of information is determined by

the combination of illuminant, color matching and object spectral reflectance functions. It

has been observed that this is equivalent to a convolution of the Fourier transform of these

functions in the frequency domain (Burns 1994).

Stiles and co-workers (1977) decomposed a set of object reflectance spectra into band-

limited basis functions. Sample spectra with at most four oscillations in the visible range

were characterized as having a limiting frequency of 0.02 cy/nm, which implies a required
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I. Introduction

spectral sampling of about 25 nm, if equally spaced in wavelength. In a study of simulated

ideal all-positive spectral sensitivities using Macbeth ColorChecker colors (McCamy et al.

1976), improvements were found in the spectral reconstruction from 3 to 7 bands, but little

beyond that number (Ohta 1981).

The CIE chromaticity coordinates for band-limited reflectance spectra have also been

investigated (Buchsbaum and Gottschalk 1984) and plotted as a Ôfrequency-limited signal

gamutÕ. Gamuts corresponding to spectral bandwidths from 0.033 to 0.005 cy/nm were

compared with those for the NTSC color television primaries. The conclusion was that

band-limited metamers can be found for most practical colors.

To date little attention has been paid to the limitations to the performance of practical

multispectral imaging systems imposed by signal uncertainty, or noise. While its presence

is acknowledged, error measures are often given in terms of the variation of mean

differences across the color space. The research reported here aims to provide an analysis

that is generally applicable to the propagation of stochastic image variations (across an

image or day-to-day). It is intended to facilitate both the interpretation of observed

performance, and its reduction when necessary.

D. Image Noise Propagation

The presence of image noise is acknowledged in reports of practical multispectral

imaging systems (e.g. Saunders and Hamber 1990). Analysis of its sources, and how they

combine and propagate through a system, however, is rare. Noise is usually described as a

constant-magnitude, stochastic source which is added to each signal with independent

distributions. Thus it is often assumed that the least significant one or two bits of encoded

signal information are corrupted. While this simplifies subsequent analysis, it is not based

on a physical description of its origins, and sheds no light on how its effect could be
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I. Introduction

reduced by design choices. Recently, Engelhardt and Seitz (1993) addressed the effect of

detector noise in the design of optimal filters for a CCD camera with a color filter array.

They included a shot noise and CCD crosstalk simulation in a numerical method based on

simulated thermal annealing.

Physical modeling of noise is commonly applied to multistage monochrome systems,

and usually includes the spatial (Wiener, or noise power, -spectrum) characteristics.

Example applications include, photography (Doener 1965), radiography (Rossmann 1963),

laser printing (Burns 1987a) and CCD image acquisition (Burns 1990). While the spatial

characteristics of image noise in multispectral imaging systems may also be important, they

will not be explicitly addressed here.

For multispectral image noise analysis one can borrow from the approaches taken in

addressing colorimetric and spectrophotometric measurement error. For example several

workers (Nimeroff 1953, 1957, 1966, Nimeroff et al. 1961, Lagutin 1987) have

addressed error propagation from instrument reading to chromaticity coordinates. In

addition, propagation of uncorrelated measurement errors in the nonlinear colorimetric

transformations from tristimulus values to perceptual color spaces has also been described

(Robertson 1967, Fairchild and Reniff 1991). Methods of correcting for systematic

measurement error due to spectrophotometer bandpass, wavelength scale and linearity

(Stearns 1981, Stearns and Stearns 1988, Berns and Peterson 1988, Berns and Reniff

1997) have also been reported.

E. Quantization

One factor that determines the precision with which images are stored in digital systems

is the way in which the continuous detected signals are encoded using discrete levels. Not
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only is the number of levels important, but also the spacing of them over the expected

signal range (minimum to maximum value). The number of levels is usually specified by

the required storage, for example an eight-bit byte can be used to encode a signal by

rounding each pixel value to one of 28=256 levels. Most analog-to-digital converters

(ADC) are uniform quantizers, i.e., they round to equal increments of input signal.

Nonuniform quantization is achieved by preceding the ADC with a nonlinear analog circuit,

which must have a stable, distortion-free response at a high temporal bandwidth. More

frequently, nonuniform quantization is achieved in two steps. The signal is first quantized

using m levels at uniform intervals. This discrete signal is then transformed via a look-up

table to one where the signal is rounded to one of n output levels, where n £ m (m-to-n

mapping). The form of the look-up table determines the input analogue signal values that

correspond to the n output levels, so that when they are projected back to the continuous

input signal, they are usually at non-uniform intervals.

Considerations of the number of required colors available for imaging systems fall into

two types. First, for any single typical scene, a limited number of object colors are

available for image capture, due to a limited number of reflective materials and light

sources. This leads to the conclusion that for 3-channel (e.g. colorimetric) imaging, the

required pixel values take the form of a scene-dependent set of quantized levels, i.e., a

palette of colors. For this form of image compression various algorithms are available for

selecting the set of levels, based on the statistics of pixel values (Gentile et al. 1990). In

addition, human vision has also been analyzed in terms of the number of simultaneous

colors that are discernible in a single image (Buchsbaum and Bedrosian 1984).

A second, and more common approach to analyzing signal quantization requirements is

to estimate the errors in the multi-dimensional signal (space of all possible signal values)

10
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introduced as a function of number and spacing of the available quantization levels. The

quantizing of multi-dimensional signals and the interpretation of the resultant differences in

a transformed (perceptual) space is a common theme. Recommendations for the required

number of levels, however, vary depending on the signal space for both image capture and

display, intended image usage (display), and perceptual criterion used. A recent study (Gan

et al. 1994) suggested that up to 42 bits/pixel are needed for RGB signals with

quantization errors interpreted in Munsell color space, or 31 bits/pixel if nonuniform

quantization is achieved by prior analog transformation.

Approximately the same requirements were identified when quantizing tristimulus

values and interpreting the results in CIELAB. Quantization by truncation, rather than

rounding, required 12-13 bits/sample for each of the XYZ or RGB signals (Ikeda 1992).

Analysis for a CCD camera (Engelhardt and Seitz 1993) included quantization of the

original RGB signals, of displayed images, and of the arithmetic precision of the calculated

matrix transformation. It was concluded that the output display introduced the main

degradation, and that 10-12 bits/signal (30-36 bits/pixel) would be sufficient. Stokes et al.

(1992) also concluded that approximately 10-bit encoding is required for image display.

The effect of signal quantization in a multispectral system was also addressed for

imaging of paintings by Saunders and Hamber (1990). They concluded that, for the task of

detecting small signal differences, 10 bits/signal were found to yield acceptable results for

several filter sets. This simplified analysis, however, assumed that the two least significant

bits were corrupted by noise.

In a more general treatment of the subject, both image dependent (palette selection) and

image independent quantization of tristimulus values have been interpreted in terms of the

resultant perceptual color space differences (Gentile et al. 1990). It was concluded that the

visual impression of quantization is reduced by quantizing in more visually uniform color

11
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spaces, but with the cost of increased complexity. Simple linear transformations (such as

matrix rotation) yielded minor gains.

F. Technical approach

In this research, it is assumed that analysis of the propagation of the first- and second

order statistical moments provides sufficient description of multi-dimensional image noise

characteristics. Techniques developed for multistage monochrome imaging systems are

extended so they can be used for multi-dimensional signals. The statistical analysis,

therefore, becomes multivariate.

We borrow from the approaches taken in addressing colorimetric and spectro-

photometric measurement error, and the estimation of image signal-to-noise ratio measures.

For example, Nimeroff (1953, 1957, 1966) derived expressions for the propagation of

instrument error statistics to the variance and covariance of the resulting tristimulus and

chromaticity coordinates. These results are expressed in a matrix notation as the first step in

demonstrating their general applicability to common signal transformations in trichromatic

and multispectral imaging. This is followed by applying nonlinear noise propagation

techniques that have been previously applied to uncorrelated errors, and univariate signal

transformations (Burns 1987b). This analytical approach is then applied to a practical

system for multispectral image capture, a CCD camera and filter set and compared with

observed performance.
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II . THEORY: MULTISPECTRAL IMAGE CAPTURE AND SIGNAL 

PROCESSING

In this chapter, the general characteristics of a multispectral camera are described. This

is followed by a description of a specific system based on a monochrome digital camera

used with a set of interference filters. Several approaches to spectral reconstruction based

on the camera signals are developed.

The design of a multispectral camera and its associated signal processing depends on

the intended application. It can be assumed, however, that the objective is to acquire

spectral rather than merely colorimetric information about an illuminated scene. This

information could be used to estimate the spectral reflectance at each pixel. From these data

it is possible to calculate a colorimetric representation of the image as viewed under

secondary viewing conditions. Alternatively, the m camera signals could be used to

directly calculate colorimetric coordinates at each pixel (Hamber et al. 1993). While there

are other color applications for multispectral cameras, in this research attention is restricted

to those above. This allows the definition of both technical objectives such as

reconstruction of the scene spectral reflectance, and the general signal processing steps

needed.

A. Multispectral Camera

The basic elements of a multispectral camera are shown in Fig. 2-1. Light from the

scene is detected after passing through each of a set of optical filters. The image is stored as

m signal values per pixel. For systems that do not require simultaneous acquisition of all

records, such as document or artwork imaging, a multispectral camera can be formed using
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a single detector and a set of filters.

m

   scene
illumination

scene
objects

filter 2 detector 2

filter 1 detector 1

filter m detector m

Fig. 2-1: Elements of of a multispectral camera.

One can model multispectral image acquisition using matrix-vector notation. The

sampled illumination spectral power distribution is expressed as

S  = 

s1 0
s2

0 sn

 ,

and the object spectral reflectance is r = r1, r2,..., rn
T, where the index indicates the set of

n wavelengths over the visible range, e.g. [380, 410,...,730 nm] and T the matrix

transpose. If the transmittance characteristics of the m filters are the columns of F

F = 
f1,1 f1,2 f1,m

fn,1 fn,2 fn,m
 ,

and the spectral sensitivity of the detector is
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D = 

d1 0
d2

0 dn

 ,

then the captured image, assuming a linear detector characteristic, is

t = (DF)TSr . (2-1)

If the filter and detector spectral characteristics are combined, G = DF, then

t =  G TSr. (2-2)

To investigate the capabilities of a practical multispectral camera, a set of seven

interference filters manufactured by Melles Griot was chosen to sample the visible

wavelength range at intervals of approximately 50 nm. This equal-interval sampling does

not favor the characteristics of any particular radiation sources, nor class of object spectra

(e.g., manufactured colorants or natural objects). On the other hand, the transmittance

functions impose a reduced spectral-frequency bandwidth on the acquired signals. This is

analogous to the smoothing of spatial information by the collection optics and scanning

aperture prior to sampling in a document or film scanner.

 The input device selected for this study was the Kodak Professional DCS 200m

(monochrome) digital camera. The lower sensitivity of the CCD imager in the short

wavelength regions, coupled with the throughput of the filters results in a wide range of
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relative spectral sensitivities, as shown in Fig. 2-2. Further details of the experimental

procedures used to characterize and operate the camera and filter set are deferred until

Chapter IV. It is simply assumed here that the filter set and camera combination are ideal

and characterized by the spectral responses shown in Fig. 2-2.

0

0.25

0.5

0.75

1

 Relative
sensitivity

400 500 600 700

Wavelength, nm

f6

f7

f5f4

f3f2

f1

Fig. 2-2: The spectral sensitivities of each of the seven filter-sensor channels.

The m camera signals will rarely be in a form that yields the required information about

the scene. For example, if the intent is to obtain the object spectral reflectance function at

each pixel, then further signal processing is required. As with most signal processing, a

priori information about the signal population can be useful in estimating the scene spectral

characteristics from the camera data. Specifically, linear modeling techniques based on

principal component analysis (PCA) (Jackson 1991, Jaaskelainen et al. 1990, Maloney

1986, and Vrhel et al. 1994) have been successfully applied to sets of paints and natural

object spectral reflectance functions. The application of PCA to spectral reconstruction from

the m camera signals follows a brief description of PCA.
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B. Principal Component Analysis

For a given sample population, the objective usually includes the identification of a

small set of underlying basis functions, linear combinations of which can be used to

approximate, or reconstruct, members of the population (Jackson 1991). This is easily

described in the context of our spectral reconstruction task.

Consider a population of sampled (nx1) spectral reflectance measurements, r, for

which one would like to identify the underlying basis vectors. First calculate the (nxn)

covariance matrix, Sr, which is the multivariate second moment about the mean vector, mr.

Then compute the n (n x 1) eigenvectors e1, e2,..., en , and the scalar eigenvalues,

l1, l2,..., ln  associated with each eigenvector. The eigenvectors are the basis vectors for

the population of spectral reflectance characteristics. Examination of the eigenvalues

indicates the amount of population variance about the mean vector that is explained by each

orthogonal eigenvector. When the eigenvalues are arranged in descending order, as is

usual, then the fraction of variance explained by the first corresponding j vectors is

v j = 

lkå
k = 1

j

lkå
k = 1

n  
.

The number of basis vectors, p, to be used to reconstruct the spectral reflectance vectors is

often chosen so that, e.g., v  ³ 0.99 . For populations of reflectance spectra, p is usually

in the range of 5 to 8 (Cohen 1964, Jaaskelain et al., 1990, Vrhel et al., 1994). Each

object reflectance vector in the sample population can be reconstructed, to within an error,

from a set of p scalars. For the ith sample the reconstructed vector is given by
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ri = Fai + m (2-3)

where F = [e1, e2,..., ep], and the set of weights (also called principal components)

associated with the ith sample is ai = [a1, a2,..., ap], and m  is the (n x 1) mean vector. For

a given sample reflectance vector, ri, the set of scalar weights can be found by

a i = FT(ri - m) . (2-4)

PCA allows us to approximate a vector, ri, using only p scalar values, in combination

with the population basis vectors and mean vector. So F and m  represent a priori

information about the ensemble of vectors to reconstructed. A variation of the above

method uses the eigenvectors of the second moments (matrix) about the zero vector, rather

than about the mean. In this case the reconstruction equation becomes

ri = F rai (2-5)

and 

a i = FTri . (2-6)

Considering the form of Eq. (2-6), F can be interpreted as a set of filter spectral

sensitivity vectors that could be use to analyze a sample, ri, for subsequent spectral

reconstruction. Therefore, if a multispectral camera could detect p signals at each pixel, via

spectral sensitivities, F, then the spectral reconstruction could be simply achieved using

Eq. (2-5). There are two immediate problems with this approach. First, there is no
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guarantee that the camera spectral sensitivities will be practically realizable, and in fact they

usually contain negative values. The second limitation is that the camera would be

optimized for spectral reconstruction for a single population, rather than for general

multispectral imaging.

Despite these limitations to the direct application of PCA to multispectral camera signal

processing, it is possible to successfully apply a modified form of the technique to the

digital camera system whose spectral sensitivity characteristics were given in Fig. 2-2.

Before describing this, however, results are presented for PCA of a set of Munsell color

samples.

C. Munsell-37 sample set

For our multispectral image capture and modeling, a group of samples were selected

from the Glossy Munsell Book of Color (Munsell 1976). Samples were chosen for 10 hues

with three samples per hue at or near the gamut boundary. In addition, seven neutral

samples were included for a total of 37 samples. Each sample measured 3.5 cm by 5 cm. A

list of the Munsell notations for the samples is given in Appendix A. The spectral

reflectance factor of each sample was measured using the Milton Roy ColorScan II/45

spectrophotometer. An established technique (Reniff 1994), that included the measurement

of eight standard tiles, was used to obtain spectral reflectance factor data for each sample at

10nm intervals from 400 - 700nm traceable to NIST with minimal systematic spectro-

photometric error.

The basis vectors were computed for the second-order moment matrix about the mean

(covariance matrix) and about zero. The cumulative percentage of variance accounted for by

up to the first eight vectors is shown in Table 2-1.
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Table 2-1: Percentage of variance attributable to the basis vectors computed from the
second moments about the mean vector (covariance) and zero vector for the Munsell-37
sample set.

p covariance moments about zero

1 75.65 89.49

2 92.35 96.65

3 98.35 99.23

4 99.20 99.65

5 99.69 99.86

6 99.87 99.94

7 99.93 99.97

8 99.96 99.98

Figure 2-3 shows the mean vector and first eight principle components for the

covariance matrix. These are the set of orthogonal basis functions for the population of

spectral reflectance vectors. They represent a set of vectors in n-space along which the

most variation between samples is observed. Although these (n x 1) vectors (directions)

are unique, their sign is arbitrary. For example, the same accuracy in spectral

reconstruction would be achieved using the first component, e1, in Fig. 2-3 (b), which is

all-negative, as would be achieved using -e1. The first corresponding scalar weight, a1, for

each color sample would merely change sign. The sign of the principal components may be

arbitrary, but the sign of the elements of each is not. This is because a change in the sign of

any (other than all) would change the direction of the vector in n-space. So, although one

can select an all-positive form for e1, it is not possible do so for the remaining principle

components, since they contain both positive and negative elements.
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Fig. 2-3: Mean vector (a), and the first four basis vectors (b) for the Munsell-37 spectral
reflectance set. The vectors are based on the covariance matrix about the mean.
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Figure 2-3 (c): The fifth to eighth basis vectors for the Munsell-37 spectral reflectance set.
The vectors are based on the covariance matrix about the mean.

The above property of the basis vectors being equivalent under a change of sign is

actually a special case of a scaling property. The spectral reconstruction uses a simple linear

combination of basis vectors in Eq. (2-3) and (2-5). One is free to scale the vectors by any

real value without changing the reconstruction. This can be seen by introducing a scaling

matrix

K = 

k1 0
k2

0 kn

so that the new basis vectors are KF . Equations (2-5) and (2-6) become

ri = FKai
 

a i = K -1Fri

 
,
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where

K-1 = 

1Úk1 0
1Úk2

0 1Úkn

 .

Some statistical software products, such as Systat, present the basis vectors as scaled

eigenvectors so that the norm of each is equal to the corresponding eigenvalue. In this

analysis any scaling is avoided, so that the components are the eigenvectors with a norm of

unity.

The basis vectors calculated from the second moments about the zero vector are shown

in Fig. 2-4. Note that the first component is spectrally non-selective, similar in shape to the

mean, shown in Fig. 2-3 (a). The remaining vectors are similar to the corresponding ones

based on the covariance matrix, shown in Fig. 2-3 (b) and (c).

A corresponding spectral reconstruction based on an increasing number of vectors is

shown for a single sample, 5PB5/10, in Fig. 2-5. It is seen that a close approximation is

achieved using six or more components for this sample.
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(a) 400 450 500 550 600 650 700

Wavelength, nm

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Value

 4
 3
 2
 1
basis

(b)
400 450 500 550 600 650 700

Wavelength, nm

-0.2

0

0.2

0.4

0.6

Value

 8
 7
 6
 5
basis

Fig. 2-4: The first eight basis vectors for the Munsell-37 spectral reflectance set. These are
based on the second-moment matrix about the zero vector. The first component is spectrally
non-selective, similar in shape to the mean in Fig. 2-3 (a).
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Fig. 2-5: PCA spectral reconstruction for a Munsell color sample, 5PB5/10, using an
increasing number of components. (a) is based on the components of Fig. 2-3, and (b) is
based on those of Fig. 2-4.

For many applications, estimating the object spectral reflectance is merely an

intermediate step toward colorimetric scene information. In these cases a meaningful

measure of multispectral image capture is in terms of color differences in, e.g, CIELAB.

For each of the measured color samples in the data set the CIELAB coordinates, L*, a*,
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b* (CIE 1986), were calculated using CIE illuminant A and the 10û observer. The

corresponding coordinates for the PCA-reconstructed reflectance vector were also

computed. The color-difference measure, DEab
* , which is the Euclidian distance between

the two CIELAB locations, was calculated for each sample. Table 2-2 summarizes the

results in the form of the average, minimum and rms DEab
*  values for the Munsell 37

sample set. Table A-1 in Appendix A lists the corresponding color errors for each sample.

Table 2-2: Summary of the PCA reconstruction for the Munsell-37 sample set DEab
*  given

are calculated following reconstruction using 6 and 8 principle components based on the
covariance, and second moment about the zero vector. CIE Illuminant D65 and the 10û
observer was assumed. See Table A-1 in Appendix A for more details.

DEab
*

Covariance  moments about zero
no. components 6 8 6 8

mean 1.17 0.221 1.18 0.224
max. 8.28 0.770 8.36 0.719
RMS 1.51 0.195 1.52 0.178

These results indicate that at least six basis vectors are needed for critical applications

calling for average colorimetric errors of DEab
* £1.0. They also show the limitation of the

population variance measure, v, based on the eigenvalues. The fraction of population

variance accounted for is high (> 99.7%) for p = 4, as shown in Table 2-1, however this

analysis, is far from complete in terms of the spectral reconstruction or colorimetric

coordinates.
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D. Spectral Reconstruction From Camera Signals

1. Modified PCA

As discussed above, it is usually impractical to use PCA directly from multispectral

camera signals. The technique can be modified, however, by computing a transformation

that allows the camera signals to estimate the scalar weights for a given sample set and

illuminant. A simple approach was applied to the digital camera-filter set system described

earlier. This resulted in the derivation of a least-square matrix transformation of the camera

signals. The matrix transforms the camera signals into estimates of the set of principal

components, a, for the each color sample,

a  = At . (2-7)

The matrix is calculated based on a set of camera signals (either modeled or actual) and

the corresponding components, via the pseudo-inverse,

A = a tT ttT -1 (2-8)

where the rows of a and t correspond to the samples in the set of reflectance vectors. Note

that a given matrix needs to be calculated for each sample set-illuminant combination, under

this procedure. Figure 2-6 indicates the signal processing from camera to spectral

reconstruction.

Note that, the basis vectors are orthogonal. The reconstruction error can always be

reduced by using additional bases. Furthermore, a reconstruction based on the first n

vectors is the minimum-rms error estimate based on any n vectors if they are included in

order of decreasing eigenvalues. The matrix A of Eq. (2-8) allows the estimation of the
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principal components from the camera signals. Any n camera signals in general will not

span the same signal-space as the first n orthogonal bases. Therefore there is no reason

that the number of camera signals used should be equal to the number bases. Spectral

reconstructions were successfully obtained, for example, using 7 signals and various

numbers of bases, 5, 6,..12. The error was found to decrease as n increased, but with

minor gains beyond 8.

   scene
illumination

scene
objects

filter set camera A F
m p

  spectral
reflectance

Fig. 2-6: Outline of the modified PCA spectral reconstruction from the digital camera.

The Munsell 37 data set was used to calculate a matrix A, based on a simulation of the

experimental camera and set of seven interference filters. The spectral power distribution of

the incandescent light source used with the digital camera is shown with CIE illuminants A

and D65 in Fig. 2-7. As expected, it matches illuminant A closely.
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Fig. 2-7: Relative spectral power distributions for the incandescent light source used with
the experimental camera (exp.), CIE illuminants A and D65.

As in Eq. (2-1), the source spectral distribution was cascaded with the camera and filter

sensitivity matrix, G, which was shown in Fig. 2-2. This resulted in the simulated, or

ideal, camera signals, t, corresponding to the Munsell 37 sample set. The set of spectral 37

reflectance vectors were also analyzed using the basis vectors shown in Fig. 2-4. For each

sample, the set of scalar weights, a, (the principal components) were calculated via Eq.

(2-6). Equation (2-7) was then used to derive the matrix A

A = 

-0.7579 -0.5856 -1.886 1.38  -3.483   1.924  -2.067

-0.545  -1.527  -1.426   1.348  -0.4675  0.6137  1.475

-1.231  -0.4659  1.215   2.516  -2.034   1.438  -1.538

-0.4061 -0.7758  2.806  -3.056   0.907  -1.907   2.275

 2.179  -2.149  -0.7936  3.416  -2.914  -0.6495  1.037

-1.677   1.934  -0.5267  -2.14   6.097  -6.505   2.672

 1.273  -2.109 2.98  -6.528   8.254  -4.445  0.6202

-0.6452  1.182  -1.992   4.808  -6.465   3.797  -0.6975

, (2-9)
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where the 8 rows and 7 columns correspond to the basis vectors and camera signals,

respectively. To test the utility of this procedure, the reflectance vector for each of the

Munsell 37 samples was reconstructed by substituting Eq. (2-7) into Eq. (2-5)

ri = F rAti 

where   indicates the estimate. The mean and rms spectral reflectance error are shown in

Fig. 2-8.
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Fig. 2-8: The simulated mean and rms spectral reconstruction errors for the modified PCA
method, and the Munsell 37 sample set.The spectral reflectance is on a [0-1] scale.
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The CIELAB coordinates corresponding to the reconstructed vectors were then

calculated. CIE illuminant D65 was chosen because the actual source distribution used for

both the experimental and calculated image capture was significantly different than D65, as

shown in Fig. 2-7. Transformation from image capture under illuminant A to display under

D65, therefore, seemed a reasonable and challenging task. The color-difference errors are

summarized in Table 2-3, with more details in Appendix B.

Table 2-3: Summary of CIELAB color-difference error, DEab
*

, following a simulation of

multispectral image capture and signal processing, for the Munsell 37 set, CIE illuminant
D65 and the 10û observer. The PCA reconstruction is for the 8 basic functions The simple
direct model is based on Eq. (2-10) and the complex model includes the mixed second-
order terms, as in Eq. (2-11). For more details see the text and Appendix B.

Direct models
sample mod. PCA MDST Spline simple complex

mean 0.63 5.59 6.77 3.00 0.68

rms 0.57 4.33 5.13 2.13 0.70

max. 2.70 15.40 18.30 10.60 3.97

Comparing the results of Tables 2-2 and 2-3, it is concluded that the modified PCA

technique can be successfully applied to actual multispectral camera signals. This method

will now be compared with two interpolation methods that do not rely on the a priori

description of the sample set in terms of a set of basis vectors.

2. MDST and Spline Interpolation

For the interference filter set used with the CCD camera, the transmittance curves have

similar shape and are centered at approximately equal intervals in wavelength, as shown in
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Fig. 2-2. This observation suggests that the multispectral image capture can be described as

a spectral sampling problem. Image acquisition can be seen as analogous to the spectral

scanning of the light reflected from the scene, followed by a sampling at approximately

50nm. Following this approach, two interpolation methods often applied to time series and

other sampled signals are applied to the spectral reconstruction from camera signals.

The Modified Discrete Sine Transformation (MDST) (Keusen 1994, Praefcke and

Keusen 1995) interpolation method has successfully been applied to the data-compression

of spectral reflectance vectors. This technique relies on properties of the sine-transform

(and Fourier transform) representations of the signal, and the steps are shown in Fig. 2-9.

To avoid the introduction of errors due to circular convolution, or Gibbs phenomenon

(Bendat and Piersol 1971), the input sequence is first separated into a linear fit and

differential components, the latter of which is then subjected to the sine transform. This

transformed sequence is extended with zero values, and then inverse transformed. An

interpolated version of the differential signal is then extracted from the inverse transformed

sequence, and added to the (interpolated) linear fit to the original data.

     sine 
transform

extrapolate sequence        
with zero values

camera
signals

interpolated   
camera        
signals

m

inverse sine    
transform

  reflect 
differential
sequence

calculate 
linear fit

+

linear fit

Fig. 2-9 The basic steps in the MDST interpolation method.
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While this procedure yields a smooth interpolated signal, it will not escape from the

limitations imposed by the original spectral sampling. In time series analysis and signal

processing these errors are often called aliasing errors. To some extent these will be

mitigated by the spectral smoothing of the filter response profile. The interpolated signals,

however, will then also include the effect of this spectral smoothing, for which it is not

possible to completely compensate, due to the low spectral sampling rate, 50nm. The

results of applying the MDST method to the camera signals, for a single sample from the

Munsell 37 set is shown in Fig. 2-10. Note the smooth nature of the interpolated signal,

and the resultant higher errors in the rapidly varying parts of the sequence. A summary of

the corresponding CIELAB color-difference errors, for CIE illuminant D65 and the 10û

observer, are given in Table 2-3.

400 450 500 550 600 650 700

Wavelength, nm

0.02

0.04

0.06

0.08

0.1

0.12

Refl.
factor 

MDST
spline
meas.
 

Fig. 2-10: MDST and cubic spline interpolation of simulated camera signals for a Munsell
color sample, 5PB 5/10. The solid line is the measured spectral reflectance factor. 
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Cubic spline interpolation (Conte and de Boor 1972, Press et al. 1988) was also

applied to the spectral reconstruction from camera signals. This technique is known for

smooth interpolation of a sampled data and, like the MDST method, requires no prior

description of the sample set. Figure 2-10 includes an example of cubic spline interpolation

of camera signals for sample 5PB 5/10 comparison. This method is seen to yield similar

results to those for the other interpolation method. This is also evident from the CIELAB

errors summarized in Table 2-3., with more details given in Appendix B.

3. Direct Colorimetric Transformation

The use of spectral reconstruction as an intermediate toward a colorimetric image

capture has been demonstrated above. For applications where the estimated reflectance

vector is not needed, however, the use of a direct colorimetric transformation has been

suggested (Hamber et al. 1993). Two forms of direct colorimetric transformation were

investigated for the multispectral camera signals. The simple model can be written as

L * = ai ti biå
i=1

m

 

a* = ci ti diå
i=1

m

 

b* = ei ti fiå
i=1

m

 , (2-10)

where a, b, ...f are constants and t1, t2, ...,tm are the set of camera signals. The resulting

least-square fit to this model, based on the CIELAB coordinates for the Munsell 37 set,

CIE illuminant D65 and the 10û observer is
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L *

a*

b *

 = 
-52.4  79.5 -3.04 132.  -135. 95.9  -16.2
102.  -89.3 -160. 114.  -111. 155.  -8.65
-214. 38.3  48.1  137.  -78.3 47.6 20.7

 

t1
p

t2
p

t3
p

t4
p

t5
p

t6
p

t7
p

. (2-11)

where the exponent p, corresponds to b = 0.430, d = 0.405 and f = 0.315 for L*, a* and

b*, respectively. Given the nonlinear cube-root part of the CIELAB calculation from

tristimulus values, these exponential values are not surprising. The results for this direct

transformation for the Munsell 37 sample set can be compared with the other methods in

Table 3-3 and in Appendix B. This direct transformation is seen to yield results lying

between those for the modified PCA method, and the interpolation methods.

A second, more complex, model that included squared mixed-signal terms was also fit

to the Munsell 37 data set. The model form is

L *

a*

b*

 = B 

t1
1/3

t2
1/3

t7
1/3

t1
1/3 t2

1/3

t1
1/3 t3

1/3

t6
1/3 t7

1/3

(2-12)

where the second-order elements of the left matrix include all of the signals taken two at a

time, resulting in a total of 28 elements, and B is a (3 x 28) matrix. The resulting least-
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square fit to the Munsell 37 data set resulted in matrix of weights

B = 100 

-1.17      0.668    -2.02
 2.89     -0.771    -0.004
-5.76     -0.537     1.54

 13.6     -0.633    -0.425
-16.1     -0.935     0.325
 6.01      4.44      1.08

 1.11     -2.21     -0.477
 1.73      0.118     0.0211

 -27.     -8.97      2.12
 116.      41.5      2.46
-199.     -42.2     -4.16
 186.     -26.5     -10.7
-73.3      34.4      10.8
 24.9      15.9     -1.71

-129.     -83.8      0.135
 221.      118.     -10.8
-222.     -14.8      32.7
 97.7     -32.5     -20.7
  21.      22.5     -3.91
-17.4     -91.5      33.4
 40.3      78.8     -55.9
-33.2      -20.      25.4
-40.8      68.2     -26.1
 85.6     -155.      71.8
-68.2      110.     -43.7
-58.5      76.4     -30.3
 115.     -132.      38.5
-39.2      40.7     -9.52

T

(2.12b)

The application of this more complex quadratic model led to a reduced color-difference

error, comparable to that for the modified PCA spectral reconstruction, as summarized in

Table 2-3, and Appendix B.

E. CONCLUSIONS

In this chapter a model multispectral camera and matrix-vector description of image

capture have been described. These were then used to develop several approaches to the

processing of the camera signals for spectral reconstruction. Interpolation methods were

seen to yield poorer results than either the modified PCA method or the complex form of

direct colorimetric transformation. Signal uncertainty, or noise, will now be introduced as it

applies to multispectral color image capture.
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III. THEORY: IMAGE NOISE ANALYSIS

In the previous chapter a model for multispectral image acquisition was described, as

were several signal processing methods for estimating the spectral reflectance factor and

colorimetric coordinates of scene objects. The ideal image capture was characterized by a

set of fixed spectral sensitivity functions (or vectors) associated with the filter set and

camera combination. Any practical system, however, will also be subject to error in the

form of variations in camera signal across the image or from day-to-day. In addition, any

signal processing steps that follow image detection, such as spectral estimation, will

influence both the amplitude and correlation of the error in the final image.

A multivariate error-propagation analysis is now presented, which describes how

stochastic errors that originate at image detection are transformed as the image is processed.

The analysis is generally applicable to multispectral image capture and transformation using

m  signals. This is illustrated by a detailed discussion of the signal path used for

spectrophotometric colorimetry. A physical model that describes the noise characteristics of

the detector is then introduced. This is then combined with the error-propagation in a

computed example of three-channel image acquisition.

A. Error Propagation Analysis

Uncertainty or noise in a detected or recorded color signal can arise from many sources,

e.g., detector dark current , exposure shot noise, calibration variation, or varying operating

conditions. If a physical model of the system and its associated signal processing is

available, the influence of various sources on system performance can be understood for
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both color-measurement (Nimeroff 1953, 1957, 1966, Nimeroff et al. 1961, Lagutin

1987, Robertson 1967, Fairchild and Reniff 1991) and imaging applications (Dainty and

Shaw 1974, Huck et al. 1985, Burns 1987a, 1990). This approach allows the comparison

of design/technology choices in terms of system performance requirements, e.g., color

error or signal-to-noise ratio. The case of general stochastic error sources which can be

functions of exposure level, wavelength etc. is addressed.

Measurements of systematic error are often used to evaluate accuracy during system

calibration. Methods of correcting for systematic measurement error due to spectral band-

pass, wavelength scale and linearity (Stearns 1981, Stearns and Stearns 1988, Berns and

Petersen 1988) have been reported. From a statistical point of view this type of error

represents bias, since the mean signal is not equal to the true value.

To address system precision one needs a description of the origin and propagation of

signal uncertainty (Papoulis 1965, Box et al. 1978, Wolter 1985, Taylor and Kuyatt

1993). This would, for example, allow the comparison of observed performance in a

secondary color-space, such as CIELAB, with that limited by measurement error, or image

detection, in an original camera-signal space. The magnitude of errors introduced by

approximations to functional color-space transformations (Hung 1988, Kasson et al.

1995) could also be compared with intrinsic errors.

Several workers (Nimeroff 1953, 1957, 1966, Nimeroff et al. 1961, Lagutin 1987)

have addressed error propagation from instrument reading to chromaticity coordinates. In

addition, propagation of uncorrelated measurement errors in the nonlinear colorimetric

transformations from tristimulus values to perceptual color spaces has also been described

(Robertson 1967, Fairchild and Reniff 1991). Here the above analysis is extended to
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include the effect of correlation between the uncertainty in related sets of color signals. As

Nimeroff has shown, the correlation is needed when computing error ellipses for 2-

dimensional color-space projections, such as chromaticity coordinates.

The analysis is given in a functional and matrix-vector notation, to aid in its broad

application to color measurement, calibration and color-image processing. While this

approach is now common in color modeling (Allen 1966, Jaaskelainen et al. 1990,

Trussell 1991, Quiroga et al. 1994), it is rarely used in color-error propagation (Wolter

1985). Many previously published reports on the subject can be seen as special cases of the

general approach taken here. The results are applied to several specific common

transformations from spectrophotometric colorimetry and CIELAB color specification. In

addition the influence of stochastic color errors on the average value of color-difference

measures, DE*ab and DE*94 is demonstrated.

1. Univariate Transformation

If a signal is subject to an error, a measurement or recorded image can be seen as a

random variable. For example, if a signal value x is detected for a process or image whose

true value is K, one can represent the set of measurements as

x = mx + ex

where ex is a zero-mean random variable with a probability density function, corresponding

variance, sx
2, and mean value, mx. If x is an unbiased measurement of the physical process,

then the mean value is equal to K. If the original signal is transformed
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y = f(x) ,

then y will also be a random variable. If f(x) and its derivatives are continuous, the

statistical moments of y can be approximated in terms of the original moments, mx ,sx
2,

and f(x). This is done by expanding the function in a Taylor series about the mean value,

mx, and expressing the first and second moments of y in terms of those of x. The mean

value of y is given by (Papoulis 1965a, Box et al. 1978)

my = E f(x)  @ f(mx) + 1
2

 fx x
 '' sx

2 (3-1)

where E[.] is the statistical expectation and

 fx x
 ''  = 

¶f2(x)

¶2x
 
mx

 .

Equation (3-1) indicates that the expected value of f(x) is equal to the function evaluated at

its mean value, but with the addition of a bias which is the product of the second derivative

of f and the variance of x. For many applications the second, bias, term is small

compared to the first. This assumption will be adopted, except as noted.

An expression for the variance of y can be similarly found. Following this approach

(Papoulis 1965a, Box et al. 1978, Wolter 1985, Taylor and Kuyatt 1993), it can be

shown that
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s y
2 @  fx '

2s x
2 +  fxx

 '' 2

4
E[(x - m x)4] - s x

4
 , (3-2)

where fx
'  is the first derivative of f with respect to x evaluated at mx. If x is, or can be

appoximated by, a normal random variable then E[(x - mx)4]= 3s x
4 and Eq. (3-2) becomes

sy
2 @  fx '

2s x
2 + fx x

 '' 2

2
 sx

4
 . (3-3)

The usual expression for sy
2 includes only the first term of the RHS of the previous

equations (3-2) and (3-3),

sy
2 @  fx '

2s x
2 . (3-4)

In most cases relevant to color-measurement and color-image processing this term is the

dominant one, but there may be mean values for which this is not a good approximation.

Equation (3-4) will be assumed unless stated otherwise. This shows that for a univariate

transformation, the signal variance is scaled by the square of the first derivative of the

function, evaluated at the mean value.

2. Multivariate Linear Transformation

A common color-signal transformation is a matrix operation, e.g.,

y = A x ,
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where a set of n input signals {x} is written as x =  x1 x2 xn
T and the output is

yT = y1 y2 ym . The superscript, T, indicates matrix transpose, and A is the (mxn)

matrix of weights. If each member of the set {x} is a random variable, the second-order

moments can be written as a covariance matrix;

Sx = 

s11 s12 s1n

s21 s22

sn1 snn

where s11 º sx1
2 , and the covariance between x1 and x2 is s12. If the set of signals {x} are

statistically independent then S x is diagonal. The resulting covariance matrix for y, from

multivariate statistics (Wolter 1985, Johnson and Wichern 1992) is given by

Sy = A Sx AT. (3.5)

Equation (3-5) can also be written as an equivalent set of linear equations. For example,

Wyszecki and Stiles (1982) address such matrix transformations and their effect on color-

matching ellipsoids.

3. Multivariate Nonlinear Transformation

When multivariate signals are transformed and combined, the resulting transformation

of the covariance matrix can be seen as a combination of the above two cases. Starting with
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a set of input signals with covariance matrix, S x, each of the signals is transformed

y1 = f1(x1, x2, , xn)
 

y2 = f2(x1, x2, , xn)
 

 

, (3-6)

where f may represent a compensation for detector response, or a nonlinear transformation

between color spaces. Let the matrix derivative operator be

J f(x) = 

¶y1

¶x1

¶y1

¶x2

¶y1

¶xn
¶y2

¶x1

¶yn

¶x1

¶yn

¶xn

 ,

where each element of Jf(x) is evaluated at the mean, (mx1, mx2, , mxn). This notation is

that of Sluban and Nobbs (1995), and this operator is the Jacobian matrix (Searle 1982).

The transformation of the covariance matrix due to Eq. (3.6) is given by (Wolter 1985)

Sy  @  J f(x) Sx  J f(x)
T  . (3-7)

Equation (3-7) can also be written (Taylor and Kuyatt 1993)
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s yii @ 
¶fi
¶xj

2
 s xjjå

j = 1

n

 + 2 
¶fi
¶xj

 
¶fi
¶xk

 s xjkå
k = j+1

n

å
j=1

n-1

  ,

which is the form most often used. Note that the simpler univariate and matrix results of

Eqs. (3-4) and (3-5) are special cases of Eq. (3-7).

Many color-signal transformations can be seen as a cascading of the above types of

transformations. This will now be demonstrated by developing specific expressions for

error propagation from spectral reflectance data to tristimulus values. This is followed by

the transformation to CIELAB coordinates. These are important and common

transformations, but can also be prototypes for image processing steps found in many

electronic imaging systems.

4. Spectrophotometric Colorimetry

A fundamental color transformation is that between instrument spectral measurement

data and the corresponding colorimetric coordinates. If one is using a spectrophotometer,

this involves measuring the spectral reflectance factor at several wavelengths over the

visible range. These are weighted with an illuminant spectral power distribution, and

combined in the form of the three tristimulus values. Often these data are then transformed

into a perceptual color space such as CIELAB or CIELUV. The following analysis

addresses noise propagation through this signal-processing path.

a. Error in Tristimulus Values

The tristimulus values are calculated by multiplying the measured sample spectral
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reflectance factor by a CIE illuminant and color matching function weighting at each

wavelength. A summation of the result yields the three tristimulus values. For the first

tristimulus value this is expressed as,

X = k Dl sjå
j=1

jmax

 xj Rj

where xj is the first CIE color matching function, s is the illuminant spectral power

distribution, Dl is the wavelength sampling interval, R is the sampled spectral reflectance

factor, and k is a normalizing constant.

The calculation of the tristimulus values can be expressed in matrix notation,

t = k Dl MT S r (3-8)

where

t = 
X
Y
Z

,
S =  

s1 0
s2

0 sn

,
r = 

R1
R2

Rn

,

and M, comprises the CIE color matching functions,

M = 
x1 y1 z1

xn yn zn
 .

Often Eq. (3-8) is implemented using ASTM weights (ASTM 1990) that combine the

illuminant and color matching function information,
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t = MT r (3-9)

where M now indicates the weight matrix for a specified CIE illuminant and observer.

The fact that the three color matching functions overlap at various wavelengths

introduces correlation into the error associated with the tristimulus elements of t (Nimeroff

1953). If t is calculated as in Eq. (3-9), then the resulting covariance matrix is given as in

Eq. (3-5)

St = MT Sr M . (3-10)

where Sr is the (n x n) spectral-reflectance covariance matrix. If the CIE color matching

functions, and ASTM weights, did not overlap this result would revert to the uncorrelated

error case. Note that, since the covariance matrix comprises the moments about the mean

values of X, Y, Z, a constant bias error in {r} has no effect on S t.

Assuming uncorrelated instrument errors, one can assess the effect of the overlapping

color matching functions alone on colorimetric error correlation. In this case the instrument

error covariance matrix, Sr, is diagonal. To more easily identify correlation introduced by

the overlapping color matching functions, consider the special case of uncorrelated and

equal instrument error whose covariance matrix is

Sr = sr
2 I (3-11)
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where I is the diagonal identity matrix. This case could be used to model simple dark

current error, or that due to quantization rounding. The resulting tristimulus-vector

covariance matrix, S t, is found by substituting Eq. (3-11) into Eq. (3-10)

St = sr
2 MT M. (3-12)

As an example, consider the case of the CIE illuminant A for the 10û observer, whose

weights are plotted in Fig. 3-1. The tristimulus matrix that would result from uncorrelated

instrument spectral reflectance error is calculated from Eq. (3-12)

St = s r2 
0.095 0.067 0.003
0.067 0.069 0.002
0.003 0.002 0.015

where the diagonal elements represent the variance of the error associated with the

tristimulus values, X, Y, and Z. The corresponding correlation matrix is

Rt = 
1 0.826 0.071

0.826 1 0.069
0.071 0.069 1

Thus, there is a correlation coefficient, rxy = 0.826 between X and Y values, due to the

overlapping weights.
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Fig. 3-1: ASTM, 10 nm weights for CIE illuminant A and the 10û observer.

b. CIELAB Errors

CIELAB coordinates, L*, a*, and b*, are  calculated from the tristimulus values, and

those of a white object color stimulus (CIE 1986) whose tristimulus values are Xn, Yn, Zn.

For example, L* is given by

L* = 116 f Y  - 16 (3.13a)

where

f(Y) = Y
Yn

1/3
for Y/Yn > 0.008856

(3-13b)

f(Y) =  7.787 Y
Yn

 + 16
116

, for Y/Yn £ 0.008856
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This indicates that L* can be computed by first evaluating the nonlinear function Eq.

(3-13b) and then the linear operation Eq. (3-13a).

The variance of the error in f(Y) can be approximated as,

sf(Y)
2  @ 

df(Y)
dY

2
 sY

2

@ 1
3mY

2/3 Yn
1/3

2
 sY

2 for mY/Yn > 0.008856 (3-14)

@ 7.787
 Yn

2
 sY

2 for mY/Yn £ 0.008856 .

Here it is assumed that Yn is a constant, but if errors between laboratories or over time are

important, then the measurement of the white object color stimulus can be a significant

source of stochastic error (Fairchild and Reniff 1991). In addition, the measured value of

Yn can introduce a bias error into all CIELAB values that are based on the measurement.

Equation (3-14) represents one element of the matrix operation of Eq. (3-7)

Sf(t) @  J f(t) St  J f(t)
T

where, for mX, mY, mZ > 0.008856Yn,

Jf(t) = 1
3

 

mX
-2/3Xn

-1/3 0 0

0 mY
-2/3Yn

-1/3 0

0 0 mZ
-2/3Zn

-1/3

 .
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As stated previously, the error-propagation techniques used here only apply strictly to

continuous functions with continuous derivatives. Clearly f(Y) and its derivative

functions are not continuous near Y = 0.008856, but evaluation of the function indicates

that both f(Y) and df(Y)/dY are approximately continuous, to the limit imposed by the

four digits of the constant 903.3. The second derivative function is discontinuous and error

propagation analysis that includes this function could include verification of the error

statistics in this region by direct simulation.

The corresponding calculations of a* and b* have a similar nonlinear first step and

subsequent second step. The transformation to CIELAB can be expressed in matrix

notation,

L*
a*
b*

 = 
0 116 0

500 -500 0
0 200 -200

 
f(X)
f(Y)
f(Z)

 + 
-16
0
0

(3-15)

or

c =  N f(t) +  n.

where c is the CIELAB vector, f(t) represents the three univariate transformations, and N

and n are the corresponding matrix and vector from Eq. (3-15). The covariance matrix for

the error in the CIELAB values is given by,

SL*a*b* @ N Sf(t) NT =  N Jf(t) St  J f(t)
T  N T . (3-16)
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c. CIELAB Chroma and Hue

In addition to distances in L*, a*, b* space, visual color differences can also be

expressed in the rotated rectangular differences in lightness, chroma, and hue,

DL *, DCab
* , DHab

*  (CIE 1986). To express the covariance description of errors in L*, a*,

b* in terms of their transformed statistics, SDL* DC* DH*, first consider the transformation

to lightness, chroma and hue angle, hab. The chroma is

Cab
*  = a*2 + b*2

and the hue angle,

hab = tan-1 b*
a*

 .

One can again apply Eq. (3-7),

JL * Cab
*  hab = 

1 0 0

0   
ma*
mCab

*

mb*
mCab

*

0  - 
mb*

mCab
*

2
 
ma*

mCab
*

2

 ,

where mCab
*  = ma*

2  + mb*
2 , and

SL * Cab
*  hab @ JL * Cab

*  hab SL* a* b* JL * Cab
*  hab

T   . (3-17)

The hue difference between two color samples is given by
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DHab
*  = 2 Cab1

* Cab2

* sin Dhab
2

 , (3-18)

where Cab1

*  and Cab2

*  are the two chroma values and Dhab is the hue-angle difference. To

find the covariance matrix for the color-difference values, DL*, DCab
* , DHab

* , only

involves the additional transformation from Dhab to DHab
* . Since hue differences about

the mean are being addressed, the reference Cab1

*  = mCab
*  and Cab2

*  of Eq. (3-18) is taken as

the ensemble of chroma values. Assuming small angles, Dhab, then

DHab
*  » Dhab mC *C2

* , 

so

JL *, Cab
* , Hab

*  = 
1 0 0
0 1 0
0 0 mCab

*
, 

SDL *DCab
* DHab

*  @ JDL *DCab
* DHab

*  SL *DCab
* hab JDL *DCab

* DHab
*

T  . (3-19)

The use of the above analysis will now be shown in a computed example of colorimetric

error propagation.
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5. Computed Example For Colorimeter/Camera

Consider a tristimulus-filter colorimeter whose three spectral sensitivities are the CIE

color matching functions. The instrument, therefore, measures the sample tristimulus

values directly. Let us also assume the signal includes a random error whose rms value is

0.5% of full scale, i.e., 0.005. This error is uncorrelated between the X, Y, and Z

signals. The variance of each signal is given by (0.005)2 where the signal range is [0-1], or

Σt = 2.5 x 10-5 I.

If the CIELAB coordinates are computed from the measured data, the corresponding

errors will be a function of the (mean) signals as in Eq. (3-14). As an example, let the true

color tristimulus values be X /Xn = 0.55, Y/Yn = 0.5, and Z/Zn = 0.05, corresponding to

a strong orange yellow. These values are on a [0-1] scale. Assuming that the measurement

errors are described or approximated by normal probability distributions, then the three-

dimensional, 95% probability error ellipsoid is shown in Fig. 3-2. This is derived from the

eigenvectors and eigenvalues of the covariance matrix, as is commonly done in multivariate

statistics (Johnson and Wichern 1992). The ellipsoid represents a three-dimensional analog

of the univariate 95% confidence interval about the mean, for the population of measure-

ments {X, Y, Z} whose variation is described by the covariance matrix Σt. The spherical

shape is due to the independent and equal-variance nature of the errors for the three signals.
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Fig. 3.2: Error ellipsoid (95%) for the measured tristimulus values example.

In applying Eq. (3-14b) for each tristimulus value,

f X
 ' (0.55) = 0.496, f Y

 ' (0.5) = 0.529, f Z
 ' (0.05) = 2.46 .

Using Eq. (3-16) the covariance matrix of the errors in the CIELAB coordinates is,

ΣL*a*b* = 
0.094 -0.406 0.162

3.291 -0.700
6.312

 ,

where the high value of σb*
2  is due to the high value of the derivative, f Z

 ' (0.05), and large
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coefficients of third row of matrix N. The corresponding correlation matrix is,

RL*a*b* = 
1 -0.729 0.211

1 -0.154
1

.

Figure 3-3 shows the three projections of the 95% confidence ellipsoid that results from the

propagation of the uncorrelated instrument error to CIELAB. The influence of the relatively

high σa*
2  value, compared to σL*

2 , is seen in the highly elliptical shapes for this example.

The corresponding three-dimensional plot for the CIELAB errors is shown in Fig. 3-4.

The square roots of the diagonal elements of the covariance matrix give the rms

deviations for the CIELAB signals. These are listed in Table 3-1. The common color-

difference metric, ∆Eab
*  (CIE 1986) is the Euclidian distance

∆Eab
*  = ∆L*2 + ∆a*2 + ∆b*2  .

The expected value of ∆Eab
*  can be approximated as shown in Appendix I,

E ∆Eab
*  ≈ σL*

2  +σa*
2  + σb*

2  - 
σp

2

8 σL*
2  +σa*

2  + σb*
2 3/2

 , (3.20)

where

σp
2 = 2 σL*

4  + σa*
4  + σb*

4  - 4 σL*a*
2 + σL*b*

2 + σa*b*
2  .

and was found to be equal to 2.79 for this computed example.
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Fig. 3-3: The three projections of the CIELAB error ellipsoid (95% confidence) for the
example.
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Fig.3-4 : L*, a*, b* error ellipsoid about the mean (95% confidence) for the example.

The square roots of the diagonal elements of the covariance matrix give the rms

deviations for the CIELAB signals. These are listed in Table 3-1. The common color-

difference metric, ∆Eab
*  (CIE 1986) is the Euclidian distance

∆Eab
*  = ∆L*2 + ∆a*2 + ∆b*2  .

The expected value of ∆Eab
*  can be approximated as shown in Appendix B,

E ∆Eab
*  ≈ σL*

2  +σa*
2  + σb*

2  - 
σp

2

8 σL*
2  +σa*

2  + σb*
2 3/2

 , (3-20)
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where

σp
2 = 2 σL*

4  + σa*
4  + σb*

4  - 4 σL*a*
2 + σL*b*

2 + σa*b*
2  .

and was found to be equal to 2.79 for this computed example.

Table 3-1: CIELAB values and rms error for the example signal.

CIELAB Coordinates mean standard deviation

L* 76.07 0.31

a* 12.81 1.81

b* 85.06 2.51

Note that Eq. (3-20) can be interpreted as describing the ∆Eab
*  bias due to variations in

L* , a*, and  b*. In the absence of signal variation, ΣL* a* b* = 0, and therefore

∆Eab
*  = 0. This is consistent with taking the ÔtrueÕ CIELAB coordinate to be µL*, µa*, µb*

for the zero-mean error case considered in this example.

Following Eqs. (3-17) and (3-19), the covariance matrix for the ∆L*, ∆C*ab, ∆H*ab

error representation is

Σ∆L
*
∆Cab

*
 ∆Hab

*  = 
0.094 0.100 0.426

6.039 1.114
3.564

 . (3-21)

This results in the error ellipsoid shown in Fig. 3-5.
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Fig.3-5: ∆L
*
, ∆Cab

*
, ∆Hab

*
 error ellipsoid for the example color. Note unequal axes scales.

The rms ∆L*, ∆C*ab, ∆H*ab deviations for these signals are given in Table 3-2. The

values for each signal should be interpreted in terms of the units of each. For example Cab
* ,

chroma, is in units of CIELAB distance projected onto the a*-b* plane. Hue angle, hab,

however, is in degrees.
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Table 3-2: L *, Cab
* , DHab

*  values and rms error for the example signal. The values of the

fourth column have been scaled to conform to the DE94
*  color-difference measure.

CIELAB Coordinates mean standard deviation scaled standard dev.

L* 76.07 0.31 0.31

Cab
* 86.02 2.46 0.51

hab
* 81.4° - -

DHab
*

- 1.89 0.82

DEab
* 2.79 - -

DE94
* 0.89 - -

a. DE94
*  Color-difference Measure

Recently (CIE 1995) the CIE adopted the DE94
*  color-difference measure, designed to

overcome some limitations of DEab
* . Specifically, the new measure discounts the visual

color difference as the chroma of the reference color increases. This relationship can be

seen from the expression,

DE94
*  = DL *

kLSL

2
 + 

DCab
*

kCSC

2

 + 
DHab

*

kHSH

2

 (3-22)

where 

SL = 1
SC = 1 + 0.045Cab

*

SH = 1 + 0.015Cab
*

 ,

Cab
*  is the chroma of the standard, or geometric mean, and k L = k C = k H = 1 for a set of

reference sample, viewing, and illuminating conditions.
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The calculation of DE94
*  can be interpreted as a scaling of the DCab

*
 and DHab

*

coordinates so that they are transformed into a modified perceptual color space, followed

by a distance computation. In matrix notation, the first step is

DL
*

DCab
*

/SC

DHab
*

/SH

 = 

1 0 0

0 1/1+0.045Cab
* 0

0 0 1/1+0.015Cab
*

 

DL
*

DCab
*

DHab
*

 . (3-23)

If the (3 x 3) diagonal matrix of Eq. (3-23), evaluated where Cab
*  = mCab

* , is denoted as P,

then the covariance matrix for the transformed DL
*
, DCab

*
, DHab

*
 color space is,

SL* C*/SC H*/SH = P SL*C*H* P T . (3-24)

This is found to be

SL* C*/SC H*/SH = 
0.094 0.021 0.186

0.255 0.100
0.680

 . (3-25)

The square-root of the diagonal elements gives the rms deviations, also listed in Table 3-2.

Following the same steps as for the calculation of E DEab
* , in Eq. (3-20), E DE94

*  was

found to equal to 0.885. As expected from Eq. (3-22), the weighting of the variation in

chroma and hue difference has been reduced. An equivalent error ellipsoid calculated from

the covariance matrix of Eq. (3-25) is given in Fig. 3-6, and completes the analysis. Note

that the figure is not only smaller, but more spherical than that of Fig. 3-5.
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DCab
*

SC

DHab
*  

SH

Fig. 3-6: Error ellipsoid based on transformed DL
*
, DCab

*
, DHab

*
 coordinates, consistent

with the DE94
*

 color-difference measure.

Since the error-propagation analysis described above is based on the first terms of the

Taylor series approximation to any nonlinear transformation, the resulting statistics are

necessarily approximations. This approximation was quantified, by investigating the

previously computed example by simulation. This was based on the direct transformation

of a set of 2000 {X, Y, Z} coordinates to CIELAB. The normally distributed input

values, generated by random number generator, had mean values and covariance matrices

equal to those used in the computed example. The resulting sample covariance matrix was

SL* C*/SC H*/SH = 
0.095 0.025 0.187

0.268 0.111
0.685

 .
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This compares favorably with the calculated matrix of Eq. (3-25), as does the computed

sample mean, DE94
*  = 0.898, with the previously calculated value of 0.885.

6. Detector Error Specification

The above computed example illustrates how the error propagation analysis can be

applied to color-signal transformations and CIELAB error statistics can be predicted from

the input signal, {X, Y, Z}, mean vector, and covariance matrix. These techniques can

also be used to propagate errors from CIELAB (back) to tristimulus values or camera

signals, if the matrix operations and the nonlinear transformations are invertible. This will

now be outlined.

Assume that for a measurement system there is an error budget such that no more than a

given average error, DEab
* , in CIELAB is allowable due to stochastic error in the input

tristimulus-value signals. The calculations of DEab
*  and DE94

*  cannot be inverted. One can

choose, however, to evaluate the propagation of CIELAB errors with a given form of

covariance matrix. In addition, due to the nonlinear step in the transformation, the error

propagation will depend on the mean value of the signal to be evaluated, as was the case for

the transformation X , Y , Z ® L*, a*, b* . As an example, the same mean signal will be

used as for the previous case, and for simplicity, let the acceptable errors have a mean

E DE94
*  = 0.5, and assume independent errors in L*, a*, and b*. From Eq. (3-20),

setting the covariance terms to zero,

SDL * DCab
* /SC DHab

* /SC = 
E DE94

* 2

3
 I = 0.083 I . (3-26)
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As in Eq. (3-5),

SDL * DCab
*  DHab

*  =  P-1 SDL * DCab
* /SC DHab

* /SC  P-1 T 

where P  is given in Eq. (3-23). The next steps are the transformation from

DL *, DCab
* , DHab

*  to DL *, DCab
* , Dhab  and then to L *, a*, b* . Since the  matrices

 JL * Cab
*  hab

* ,  JL * a * b * and  Jf(t) are easily inverted, the error covariance matrix for the input

signals as,

St = Jf(t)
-1  JL * a * b *

-1  JL * Cab
*  h *

-1  SDL * DCab
*  DHab

*  JL * Cab
*  h *

-1 JL * a * b *
-1 Jf(t)

-1 T
 . (3-27)

For the example signal, the calculated tristimulus-value covariance matrix is 

S t=  10-5
3.28 2.36 0.322

2.21 0.477
0.908

(3-28)

and the rms signal error of

sX = 0.0057, sY = 0.0047, sZ = 0.0030.

Equation (3-28) represents the propagation of the covariance matrix of Eq. (3-26) to an

equivalent input colorimeter/camera signal matrix. This means that, for independent

CIELAB errors, to achieve an average DE94
*  value of 0.5, the source error covariance

elements must be no greater than those given in Eq. (3-28).

64



III. Theory: Image Noise Analysis

B. CCD Imager Noise Model

The previous section discussed ways in which stochastic error can be analyzed as it is

propagated through a signal path. The sources of error in electronic image detection will

now be modeled. This will set the stage for the case of multispectral image acquisition and

signal processing from detected image to colorimetric representation to be addressed in

Chapter V.

Charge-Coupled Device (CCD) detectors arrays use analog shift registers to read out a

signal charge for each pixel. The one- or two-dimensional array and associated electronics

are referred to as the CCD imager. There are several sources of image noise in CCD

imagers (McCurnin et al. 1993, Holst 1996), but for present purposes the net stochastic

variations will be described as being of three types.

Figure 3-7 shows a simple model for the CCD imager, whereby a certain fraction, h,

of the incident photons are detected. Ignoring dark noise for the moment, this mechanism

can be written as

o = ih (3-29)

where o and i are the exposure and detected signals, respectively. If the mean input

exposure is m i, then the mean output, Poisson-distributed signal charge, in electrons, is

mo = hm i, (3-30)

where h is the effective quantum efficiency  which is a function of wavelength. Note that

  This includes the primary quantum efficiency and any net loss mechanisms that reduce the mean number

of signal charge electrons that are read out, amplified, quantized, etc.
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it is assumed that, over the visible wavelength range, a single free electron is generated for

each absorbed photon. The arrival statistics of uniform exposure (per area and over time)

are governed by Poisson statistics, and for this discrete probability distribution the variance

is equal to the mean, s i = m i. If h is interpreted as the binomial probability that an incident

photon is detected, then the detected electrons are also distributed as Poisson random

variables, for h£1. Therefore, for the detected signal, so
2 = mo. This component of image

noise is usually referred to as shot, or photon noise. Since it will be observed even with

perfect image detection, it is a lower noise level to which actual imager performance can be

compared.

dark
noise

i o

detected signalinput signal

h

Fig. 3-7: Model for electronic image detection.

Another noise component included in our analysis is dark noise, so-called because it is

characterized by signal fluctuations in the absence of light exposure. There are several

physical origins of this noise source, such as spontaneous thermal generation of electrons,

and it is modeled as a constant-variance, zero-mean random variable added to the detected

signal. If both dark and shot noise are included as statistically independent stochastic

sources, the resulting noise variance is

so
2 = sd

2 + hm i (3-31)
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where the dark noise variance is sd
2. Note that for average signal levels where shot noise

is dominant, the variance is proportional to the mean signal and the rms noise is

so @ hm i . The noise model described by Eq. (3-31) is often used for electronic image

capture.

Equation (3-31) assumes that a fixed fraction of incident photons are detected for each

detector in the imaging array. A third source of image noise arises, however, because the

detector sensitivity varies from pixel-to-pixel. This can result in a varying signal offset, or

bias but is usually characterized by a variation in h about its nominal value. This

photoresponse nonuniformity (Holst 1996) is often described as a variation in the detector

gain (electrons/photon) across the image field. Many imaging systems correct for this

fixed-pattern noise by a pixel-to-pixel calibration to a uniform, or flat-field image. This

significantly reduces the influence of this noise source but relies on the fixed-pattern

detector gains being stable between periodic calibration procedures. In addition, the finite

arithmetic precision and signal quantization usually result in a residual fixed-pattern noise

component being observed.

The fixed-pattern gain variation can be modeled by letting h be a random variable with

a mean and variance equal to mh and sh2, respectively. Thus both variables in the RHS of

Eq. (3-29) are random variables, if variation across the imaging array is included. Since the

detected signal is no longer a simple Poisson process, its variance is not necessarily equal

to its mean value. Allowing the fixed-pattern gain (i.e., h) to vary as an approximately

normal random variable from pixel-to-pixel it was found, as shown in Appendix D, that

mo = mhm i (3-32a)
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so
2= mh + s i

2mh2 1 - f 2 , (3-32b)

where f = sh/mh, the fractional rms fixed-pattern gain noise. Note that when sh = 0

equation (3-32b) reverts to the simple Poisson case, as it should. If the fixed pattern gain

variation can be expressed as a fixed fraction of the input signal, shi
2  = f2mhi

2 , and the dark

noise is included, from Eqs. (3-32a) and (3-32b)

so
2 = sd

2 + mo + mo
2 f2 1 - f2 . (3-33).

Equation (3-33) shows the signal variance in electrons as comprising of three components,

The first term of the RHS is the dark noise whose variance is independent of the mean. The

second term is the familiar shot-noise variance proportional to the mean signal. The third

term is a component that is proportional to the square of the mean signal.

After image capture, the pixel values are usually expressed in terms of encoded signal

digital counts (e.g. 0-255) or on a scale covering to the minimum and maximum exposure

over which the signal is quantized. This is helpful because it allows the comparison of

imaging performance as the dark, shot, and fixed-pattern noise components vary. The

noise variance (and rms noise) can be put on a [0-1] scale if both sides of Eq. (3-33) are

divided by the maximum signal charge in electrons. This was done for Fig. 3-8 which

shows the rms imager noise plotted as a function of both fixed pattern gain noise, f, and

mean signal level. For this example, the maximum signal is 60,000 electrons and the dark

current taken as 30 electrons, or 0.5% of the maximum. As f increases, the rms noise

  The maximum charge is often set at less than the imager full-well charge to avoid signal clipping and

detector blooming, since the maximum scene exposure is difficult to predict with certainty.
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changes from being primarily shot noise to being dominated by the fixed-pattern

component.

0
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Fig. 3.8: RMS imager noise model as a function of mean signal and fixed-pattern gain
noise. The maximum signal, emax was 60,000 electrons, rms dark noise = 0.5% of emax.
Fixed pattern noise, f, varies from 0 - 0.5%. The signal and noise are shown on [0-1]
scale.

C. Image noise propagation for 3-Channel CCD Cameras

As an example of how to combine the error-propagation analysis results of Section 3.A

in the context of an imager model, of Section 3.B, consider a trichromatic camera. It is

assumed that the camera is used to record scene information, and that colorimetric image

information, such as CIELAB coordinates is needed to facilitate image exchange or

printing. The camera spectral sensitivity characteristics are shown in Fig. 3-8, for the R,

G, and B signals.
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Fig. 3-9: Spectral sensitivity functions of detector and optics in arbitrary units.

To transform the camera signals to approximations of CIE tristimulus values (X, Y, Z)

a matrix operation is often used (Quiroga et al. 1994)

t = M s (3.34)

where sT = R G B , tT = X Y Z , M is a (3 x 3) matrix of weights. In most practical

cases, as in this example, the imager spectral sensitivities cannot be expressed as a linear

combination of CIE color matching functions, therefore Eq. (3.34) allows only an

approximation to the tristimulus values. The matrix M will be a function of the illuminant

power spectral distribution and imager spectral sensitivities, and is chosen to minimize a

particular weighting of colorimetric difference between the estimated and true tristimulus

values.

As discussed in the previous section, imaging detectors are subject to stochastic error
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due to, for example, photon arrival statistics (shot noise), thermally generated electrons,

readout electronics and signal amplification. The detected signals, s, will therefore include

variation from many sources, and can be modeled as a set of random variables. The

transformed signal, t, contains a corresponding error that will be a function of the variation

in s, and the matrix transformation, M. Results for the error-propagation analysis of

section 3A provide a way of predicting the statistics of the noise due to the image detection

step in terms of the output transformed signal.

The second-order statistics of a set of detected signals subject to a stochastic error can

be described by the covariance matrix,

S s = 
sRR sRG sRB
sRG sGG sGB
sRB sGB sBB

where the diagonal elements are the variance values of the R, G, and B signals. In

general, the elements of S s will be functions of the mean detected signal. The resulting

covariance matrix for the transformed signals is

S t =M Ss MT. (3.35)

Similarly, the propagation of the signal covariance through nonlinear transformations

can be approximated by applying a derivative matrix, as in Eq. (3.7). If the CIELAB

coordinates are expressed as a vector, cT = L* a* b* , and the Jacobian Matrix of the

multivariate transformation is written, as in Eq. (3.16)
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J =  
0 ¶L*/¶Y 0

¶a*/¶X ¶a*/¶Y 0
0 ¶b*/¶Y ¶b*/¶Z

then

S c »  J S t JT . (3.36)

For this example, it will be assumed that the detector noise is characterized by a dark

noise and shot noise components. Note that these characteristics can be estimated from the

published information for many detectors, which often includes values for RMS dark

electrons, RMS read noise, and shot-noise estimates based on full-signal charge. It is

assumed that the fixed-pattern noise from variation in the sensor sensitivity is compensated

for, and that the three image (RGB) layers are fully populated having been fully sampled,

or by previous interpolation.

Let the shot-noise levels correspond to a maximum signal of 60,000 electrons/pixel and

the RMS dark noise is taken as equivalent to 50 electrons, 0.08% of the maximum signal.

These noise characteristics are shown in Fig. 3.10, and expressed on the scale of [0-1].

The color-correction matrix, was calculated to transform the detected signals to estimates of

tristimulus values. Given the spectral sensitivities of Fig. 3.9 and a D65 illuminant, the

matrix

M = 
0.321 0.666 0.425
0.106 1.140 0.125
-0.039 -0.076 4.399

 , (3.37)

is based on a set of 24 measurements of a MacBeth ColorChecker chart, and can be applied
as in Eq. (3.34).
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Fig. 3-10: RMS noise characteristics for model imager, where signal and noise are

expressed on a [0-1] scale.

For this example, it is assumed that the camera signals include independent noise

fluctuations, whose RMS values vary with mean signal level as in Fig. 3.10. The signal

covariance, S s, is diagonal. The results of applying Eqs. (3.36) and (3.37) are given in

Table 3-3, and predict areas in CIELAB with higher noise. The noise of the Black sample

can be attributed to the high gain from the matrix M element, 4.399. This is because of the

relatively low spectral sensitivity of the blue detection channel. The transformation from

tristimulus values to CIELAB further emphasizes the dark signal fluctuations, due to the

cube-root transformation and its derivative.
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Table 3-3: Measured CIELAB coordinates for the 24 patches of the MacBeth ColorChecker

and the calculated CIELAB RMS errors following imager noise model.

Name L* a* b* sL* sa* sb*

Dark skin 37.9 14.7 14.9 0.28 0.63 1.69
Light skin  66.2 15.5 14.7 0.20 0.43 0.91
Blue sky 51.1 -6.48 -23.5 0.24 0.46 0.83
Foliage 44.4 -11.2 24.9 0.26 0.48 1.66
Blue flower 57.6 14.6 -24.8 0.21 0.47 0.77
Bluish green 73.0 -21.6 0.54 0.19 0.33 0.77
Orange 59.4 21.5 53.2 0.21 0.47 1.81
Purplish blue 41.0 9.58 -43.3 0.27 0.58 0.82
Moderate red 50.8 42.2 10.6 0.22 0.54 1.13
Purple 32.5 28.5 -19.1 0.30 0.74 1.16
Yellow green 74.3 -22.3 60.9 0.19 0.33 1.33
Orange yellow 71.4 8.13 65.5 0.19 0.40 1.56
Blue 29.5 12.5 -52.7 0.34 0.76 0.92
Green 57.6 -31.1 38.6 0.23 0.33 1.42
Red 43.1 66.4 29.4 0.22 0.61 1.95
Yellow 81.8 -2.33 80.3 0.18 0.35 1.51
Magenta 52.7 54.5 -12.9 0.20 0.53 0.87
Cyan 51.7 -11.8 -28.1 0.24 0.44 0.80
White 96.1 -3.65 1.82 0.16 0.33 0.65
Neutral 8 81.1 -3.61 -0.85 0.18 0.36 0.71
Neutral 6.5 66.2 -3.16 -0.64 0.20 0.40 0.82
Neutral 5 50.6 -2.66 -0.85 0.24 0.47 1.00
Neutral 3.5 33.7 -2.35 -0.67 0.31 0.63 1.45
Black 19.0 -0.80 -0.98 0.50 1.02 2.50

D. Conclusions

From the general analysis of error propagation, the first two statistical moments of

stochastic errors can be analyzed in many current color-spaces and through many color-

image processing transformations. In addition to the magnitude of the signal variance, the

propagation of the covariance between sets of signals has been described. The methods

used have been implemented using matrix-type operations, but there are several
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requirements for their success. The errors to be analyzed must result from continuous

stochastic sources. If so, then expressions for the linear matrix transformation, Eq. (3-5),

is exact. The expressions for nonlinear transformations, however, are based on truncated

series approximations. The partial derivatives included in these expressions should be

continuous. Note, however, as shown for the tristimulus values-CIELAB path, that

approximately continuous transformations can also be analyzed.

The accuracy of the linear approximations can be evaluated by examining the higher-

order derivatives. For example, the magnitude of the second term of the RHS of Eqs. (3-2)

or (3-3) should be much less than the first, fx
' 2sx

2, in order to use the linear approximation

of Eqs. (3-4) and (3-7). Since both fx
'  and fx x

' '  are functions of mx , it is useful to identify

values of the argument(s) for which the condition does not hold, e.g., fx
' @0. If the first

derivative is small compared to the second, and the error distribution is approximately

Gaussian, then Eq. (3-3) can be used. This form can also be used for error distributions

which are similar in shape to the normal, e.g., lognormal and Laplacian. For other

distributions, such as the uniform, chi-square or exponential, Eq. (3-3) should be used.

By applying the error propagation techniques, variation due to measurement precision

can be compared with the effects of experimental variables using error ellipses and

ellipsoids. These are based on the calculated or observed covariance matrices and

underlying probability density functions, and require the analysis of covariance. The

inverse of many color-signal transformations of current interest can also be addressed. As

demonstrated, a given tolerance of average DEab
*  or DE94

*  can be related to an equivalent

uncertainty in tristimulus values, other sets of detected signals, or image pixel values.

Modeling of the noise characteristics of color-measurement and imaging devices can be

combined with error-propagation analysis to predict signal uncertainty in color-exchange

75



III. Theory: Image Noise Analysis

signals. Since physical devices include correlated noise sources, and signal-processing

often combines signals, analysis of signal covariance is included. By applying these

methods, design and calibration strategies can include not only the minimization of mean

color errors, but also the signal variation. Uncertainty from signal detection, operating

conditions, aging and manufacturing tolerances can be analyzed if they are well described

as stochastic processes. Noise levels modeled in this way can also be compared with errors

due to limited precision used in signal storage and image processing.
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IV. EXPERIMENTAL: MULTISPECTRAL DIGITAL IMAGE CAPTURE

As discussed in Chapter II, an experimental multispectral camera was assembled using

a Kodak Professional DCS 200m (monochrome) digital camera and set of seven

interference filters from Melles Griot. An additional filter-image was captured for a total of

eight records per multispectral image. This eighth filter was a broadband infrared blocking

filter, Schott glass KG5 (1mm.). This was added during the experiment due to the apparent

low contrast of the f7 digital images, with the thought that they may be corrupted by

unwanted infra-red detection . The camera and filter set were mounted in a copy stand to

capture several images of flat test targets and artwork. The objective was to investigate the

extent to which the sequentially captured digital images could be used as a multispectral

description of the illuminated object. The evaluation closely paralleled the analysis of both

the mean signal and image noise that was presented in Chapters II and III. Of specific

interest was the extent to which the straightforward matrix-vector description of ideal image

capture, and CCD imager noise would need to be adapted to describe, e.g., the spectral

transmittance of actual interference filters, and copy stand illumination nonuniformity

across the image field. In addition, signal quantization was expected to introduce additional

signal uncertainty. 

A. Equipment

The experimental layout is shown schematically in Fig. 4-1, where the sample was

illuminated by the copy stand lamps at 45û. There were two lamps on each side, separated

vertically by 22 cm about the center of the sample, for a total of four. Each lamp used a

250-watt Sylvania PKT bulb, and was 47 cm. from the sample. The direction of the lamps

 subsequent image processing results did not favor f8 over f7 data, however.
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was adjusted to minimize the exposure nonuniformity as detected by the digital camera.

This resulted in each set being pointed at a position approximately 15 cm from the center of

the sample. Not shown is the Apple Macintosh computer, to which the camera was

connected via an SCSI cable. The image files were acquired into Adobe Photoshop 2.0

software.

45û

lamp

interference
       filter

 3
0 

cm

 88 cm

47 cm 

 DCS 200m
digital camera 

(Top view)  

Fig. 4-1: Experimental multispectral camera layout.
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The Kodak Professional DCS 200m digital camera is a conventional 35mm Nikon

N8008s camera that has been modified by the attachment of an electronic camera back so a

CCD imager is in place of the photographic film. In addition, magnetic storage is added

below the camera, so that multiple images can be acquired. The camera is shown in Fig. 4-

2. The imager size is smaller than a frame of 35mm film, so that when the camera is used

with a Nikon 28 mm lens, the scene is captured with an approximately normal (50mm lens)

perspective. This was the lens used. The effective sensitivity of the camera is influenced by

the ISO setting. If used with photographic film, this would adjust the exposure metering

system to match the film speed. In the electronic version of the camera, however, this ISO

value sets an effective camera gain (digital signal value/exposure level). The values of 100,

200, and 400 are available, with 200 being recommended (Kodak 1994).

Fig. 4-2: Kodak Professional DCS 200m digital camera.

The camera has both automatic focus and exposure controls that operate in the same

way that the camera would if it had the standard camera back and film. Since both of these

are optimized for normal (broad-spectrum) visible images, they would not necessarily give

accurate settings when used with the narrow-band interference filter set. To avoid this

79



IV Experimental: Multispectral Digital Image Capture

source of variability, manual settings were used for both camera focus and exposure. The

camera captures digital images that are 1524 pixels x 1012 pixels, with each pixel value

encoded as an 8-bit [0-255] number. The distance from the camera to the sample was

adjusted so that a sample 33 cm x 23 cm was covered by an area 1340 pixels x 930 pixels.

The sampling interval was 0.25 mm at the object. The distance from sample to the front

surface of the lens was 88 cm. For each image captured in the set, the filter was held in

contact with the metal ring of the camera lens. For each image captured in a set of seven,

the filter was held close to the front surface of the camera lens.

B. Spectral Measurements of Camera Components

Before any image capture was performed with the filter sets, the spectral characteristics

of each of the components were measured. The spectral power distribution of the source

was measured by replacing the digital camera with the PhotoResearch SpectraView PR-

703/PC spectraradiometer. Ten measurements were made for the light reflected from a

barium sulphate reference target placed at the center of the image field. The resulting

spectral radiance measurement is shown in Fig. 4-3. This graph is shown in scaled form in

Fig. 2-7, for comparison with CIE illuminants A and D65.
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Fig. 4-3: Measured spectral radiance for the copy stand source, in units of w/sr m2/nm.

The spectral transmittance functions of the set of interference filters was then measured

by repeating the above measurement with each of the seven filters in the optical path, close

to the front surface of the SpectraView lens. Each of these measurements where then

divided, wavelength-by-wavelength, by the source radiance to give the measured spectral

transmittance. These are shown in Fig. 4-4. As noted earlier, the curve shapes are similar

with filters centered at approximately 50nm intervals.
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Fig. 4-4: Measured spectral transmittance characteristics, on a [0-1] scale, for the set of
interference filters. The eighth broadband response is that of an infrared blocking filter.

Measurement of the spectral sensitivity of the digital camera was accomplished using a

calibrated light source, part of the Model 740A-D Optical Radiation measurement system

from Optronic Laboratories, Inc. The procedure, described in Appendix F, yields an

effective spectral sensitivity in terms of digital count/j/m2/nm. It can be compared with the

expected detector absolute quantum efficiency in shape, as a normalized curve. This is

shown in Fig. 4-5, where the measured spectral sensitivity was scaled so that the integrated

curve was equal to that calculated from nominal quantum efficiency and lens spectral

transmittance data .

Figure 4-5 indicates that the digital camera response is far from uniform over the visible

wavelength range. Most CCD imagers show a rising intrinsic quantum efficiency from

about 400nm to the mid-infrared 2.0 µm (Dereniak and Crowe 1984). The high sensitivity

above 700 nm needs to be reduced for visible imaging, since it would result in a reduced

contrast (visible) image similar to that due to optical flare. To solve this problem an infrared

 This information was kindly supplied by Richard Vogel of Eastman Kodak Company.
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blocking filter is often used in the optical path. In the case of the DCS 200m camera, it is

attached to the front surface of the detector array. This causes the spectral sensitivity of the

camera to decrease above 600nm. In particular, the low response above 650nm is the

reason that the experimental camera exposure time had to be significantly increased for filter

7. This was done to avoid a reduced signal-to-noise ratio and increased signal quantization

errors. This is a common technique (Tominaga 1996), however some systems apply an

analog gain to compensate for a low signal prior to quantization (Martinez et al. 1993).

This would be useful for applications where extending the exposure time is undesirable due

to camera or subject motion.

400 450 500 550 600 650 700

Wavelength, nm

0

0.05

0.1

0.15

0.2

0.25

Spectral  
   sens.

Fig. 4-5: Comparison of the measured (symbol) digital camera quantum efficiency (on a 0-
1 scale) with that calculated (line) from nominal data supplied from Eastman Kodak
Company.
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C. Photometric, Dark Signal and Illumination Compensation

Any analysis of the experimental multispectral camera requires information about the

relationship between the output digital signal and the input exposure. This can vary

between cameras, since although the primary photon-detection mechanism is approximately

proportional (linear), the subsequent signal processing influences the overall input-output

characteristic. The basic signal processing steps are shown Fig. 4-6. The detector absorbs

energy from the incident exposure photons and generates an electron charge. This signal is

read out from the detector, amplified and stored as a quantized digital signal. Often this

storage is temporary, because the digital signal values are immediately transformed, via a

discrete look-up table (LUT), into another form depending on the intended use of the digital

image. If this LUT is a transformation from p to q discrete values, then a change in the

effective signal quantization is also accomplished in this step. A typical LUT is a

transformation between 1024 (10 bits/pixel) to 256 (8 bits/pixel), with a shape designed to

counteract the photometric characteristics of CRT displays (Berns et al. 1991).

Detection Readout Quantization
Look-up   
table

    input
exposure

 digital
image

    p 
levels

    q 
levels

Fig. 4-6: Basics steps of image capture in a digital camera

Due to the wide range in the copy stand lamp spectral radiance and camera sensitivity

over the wavelength range, as shown in Figs. 4-3 and 2-2, it was necessary to vary the

camera exposure time from filter to filter. If a fixed camera exposure was used, then, for

84



IV Experimental: Multispectral Digital Image Capture

example, the first and seventh image records would have been based on very low levels of

detected signal. This would have resulted in high levels of image noise. It was decided to

adjust the camera exposure time so as to yield a maximum digital signal for a white scene

reference, without causing signal clipping at the maximum of level 255. In addition, since

actual spectral transmittance can vary with incident angle for this type of filter, a fixed lens

f/number was chosen for all exposures in a series. The camera ISO value was set so that

the exposure times were within a range of ≤ 2 sec., to avoid any potential increase in (dark

current) image noise due to long exposure times. Table 4-1 lists the camera settings used

for image capture of a target made up of the Munsell 37 sample set.

Table 4-1: Camera settings used for sample target imaging.

f1 f2 f3 f4 f5 f6 f7
Camera exposure time (sec.) 2 1/4 1/15 1/30 1/30 1/30 1/4

Camera ISO 200
lens f/number f/16

To measure the camera photometric characteristics, the six neutral steps of the test chart

were captured at the center of the image field with the above settings. The reason for

capturing all of the data at the center, was to reduce the effect of nonuniform illumination

across the image field. For each filter, six images were captured and the average digital

value for the patch was recorded, for a total of 42 values. These were least-square fit with a

polynomial model against calculated signal values based on the measured source

illumination, sample reflectance factor, and measured filter-camera spectral sensitivity. Fig.

4.7 shows representative characteristics for the signal path for the f3 record (filter 3,
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centered at 500 nm). By calculating an independent calibration curve for each record, the

variation across camera exposure-time settings is taken into account and there is no reliance

on the accuracy of the nominal exposure time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

camera signal

0

0.2

0.4

0.6

0.8

1

corrected
 signal

Fig. 4-7: Compensation used for the DCS camera for images captured with filter number 3.

Two potential sources of error in the multispectral image camera require compensating

dark signal and illumination nonuniformity across the image field. Signal correction

schemes, however, usually rely on an implicit model of how these errors are introduced. If

an image is captured without light, the resulting image file will usually contain some

stochastic dark noise variation from pixel-to-pixel. In addition the average signal may also

vary. It is usually assumed that this dark signal constitutes a bias signal added to the

detected image. Since a component of this dark signal is the spontaneous thermal

generation of free electrons, it can vary with exposure interval.

A straightforward way of estimating this dark signal is to capture dark images (e.g.

with camera lens cap in place) and examine the resulting surface of (low spatial-frequency)
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signal values. This was done for camera settings corresponding to those used for image

capture. Figure 4-8 shows such a surface expressed in digital signal counts. To compensate

for this source of error, a dark signal from this surface is  subtracted from the camera image

signal as a function of image position. Typical dark-signal characteristics for the DCS

200M camera are shown in Fig. 4-8 (a).

Two types of illumination nonuniformity can be expected to influence the captured

image: that due to the camera lens and that due to the copy stand lamps. Both of these can

be compensated for by capturing a white reference image under the same conditions that are

used for the sample images. A target was constructed from paper coated with a barium

sulphate reference white material. Figure 4-8 (b) shows one such profile for the f3 image.

An effective illumination profile was then estimated by transforming the signal values via

the above photometric correction equations.

The corrected signal is expressed as

s i = 
f i s(x, y) - d(x,y)

f i w(x, y)  - d(x,y)
,    for i = 1, 2, ,8 (4-1)

where s is the camera signal, d is the dark signal, w is the reference image signal, f  is the

camera compensation equation, and i-th indicated filter-image number. It should be noted

that this simple form of compensation implies that the dark signal simply adds to the signal

after detection, and that the illumination profile cascades with the source.
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Fig. 4-8: Observed dark-signal and white reference image characteristics for f3 settings,
plotted as a function of pixel location. The units are digital counts [0-255].

D. Experimental Image Capture

Several multispectral images were captured using the camera assembled as described

above. The camera was connected to an Apple Macintosh computer via an SCSI cable. The
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exchange of data was accomplished using the Kodak-supplied driver (Kodak DCS 200

Plugin 3.1) and Adobe Photoshop 2.5 software. The camera settings were chosen so as to

yield a maximum digital signal without causing signal clipping, and are given in Table 4-1.

The maximum signals obtained (for the white sample), however, were far from the

maximum digital signal value of 255, as can be seen from the listing in Appendix G. This

is due to the fact that changing the camera exposure time by one setting, e.g. from 1/60 to

1/30 sec., doubles the exposure and therefore approximately doubles the detected signal

charge. With such coarse exposure adjustments, it was necessary to set the exposures

lower than intended to prevent signal clipping at the next higher setting. This is a drawback

to using a digital camera whose CCD image detector has different characteristics than the

photographic film, around which the Nikon camera controls were designed. Results for the

imaging of the Macbeth ColorChecker target will now be discussed in detail, since they

demonstrate both the general level of camera performance achieved, and limitations of the

system.

The eight image files were captured, as were the equivalent images of the white

reference card. Dark frame images were also stored. For each of the ColorChecker files,

the mean and standard deviation of the digital signal values corresponding to the area of

each of the 24 test colors were computed and stored. This was also done at the same

locations for the dark and white reference image sets. Appendix G lists the observed mean

signals for each filter capture. Figure 4-8 shows a perspective view of dark and white

reference signal values, which are also listed in Appendix G. Figure 4-9 shows prints of

the captured ColorChecker chart for all eight filter-records.

Following the procedure described in the previous section, the photometric correction

was derived for each filter image. The resulting equations are given in Appendix G. As a 
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Fig. 4-9 a: Captured images of ColorChecker target with filter 1 (top) and filter 2
(bottom).
              
                                                                          90-1



Fig. 4-9 b: Captured images of ColorChecker target with filter 3 (top) and filter 4
(bottom).
              
                                                                          90-2

burns
Line errror in bottom image was introduced after capture during disk storage.



Fig. 4-9 c: Captured images of ColorChecker target with filter 5 (top) and filter 6
(bottom).
              
                                                                          90-3



Fig. 4-9 d: Captured images of ColorChecker target with filter 7 (top) and filter 8
(bottom).
              
                                                                          90-4
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measure of the success of this procedure, Fig. 4-10 shows the corrected signal values

plotted versus the ideal signal levels for filter number 3. This filter image showed the worst

signal-correction performance of the eight. Note that the photometric calibration was not

calculated as a fit to these signals, but rather to a set of neutral samples.
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Fig. 4-10: Digital camera signals for the f3 image, after photometric calibration, versus
calculated model signals.

E. Conclusions

A multispectral camera was assembled using a monochrome digital camera, set of

narrow-band interference filters, and copy-stand. The spectral sensitivity and photometric

response of the camera were characterized. Following a correction of the image data for this

response, account was taken for the effective illumination variation across the image field,

and the dark signal. This resulted in image data suitable as input for the signal processing

described in Chapter II, for  spectral and colorimetric estimation. This will be described in

the next chapter.
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V . IMPLEMENTATION: SPECTRAL AND COLORIMETRIC 

ESTIMATION

The accuracy of the experimental multispectral camera was assessed by both spectral

reconstruction and colorimetric estimation from captured images. The intent was to

determine the extent to which this could be done using the transformations, matrices and

model equations, that were developed in Chapter II. This set the stage for additional

investigations into possible improvements of the system. An optimized PCA transformation

based on the actual camera signals was implemented, followed by a simple technique for

improving the input signal-to-noise-ratio. Based on the results of Chapter II, the two

interpolation methods, MDST and cubic spline, were not applied to the task of spectral

reconstruction from the experimental camera.

A. Estimation for each pixel.

The captured signal values for the ColorChecker target were corrected for both the

camera photometric response and effective illumination variation across the field. Then sets

of contiguous (20 x 20) pixels were used to estimate the spectral reflectance and

colorimetric coordinates. The modified PCA method was applied using the A matrix of Eq.

(2-9), for eight basis vectors and seven camera signals. The average error (n=400) in the

estimated spectral reflectance factor plotted versus wavelength, averaged over the 24 color

samples, is shown in Fig. 5-1.
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Fig. 5-1: Mean error in the estimated spectral reflectance factor, based on modeled signal
path and set of 400 pixel values. Seven camera signals and eight basis vectors were used.

Example estimates of spectral reflectance factor based on a single set of (7) pixel

values, for the Cyan and Orange samples are shown in Fig 5-2. It was observed that the

estimates from the set of pixel values were similar and not centered about the true measured

vector. This is consistent with the mean errors summarized in Fig. 5-1.

The colorimetric estimation was evaluated by calculating the CIELAB coordinates

corresponding to the 400 estimated spectral reflectance vectors for each sample color. CIE

illuminant D65 was chosen for this calculation, as was the 10û observer. An average error,

∆Eab
*  was then calculated for the set of 400 estimates per color sample, listed in Appendix

H. The errors are seen to be much greater than those expected based on an ideal camera and

listed in Appendix A, for the Munsell 37 sample set. This can be ascribed to the image

noise levels, particularly at low average signal levels, as shown later in Fig. 6-2.
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Fig. 5-2: Example estimated spectral reflectance factor for the Neutral 3.5 (a) and Blue (b)
samples, following PCA reconstruction based on a single pixel set of seven values. The
lines indicate the measurements and the symbols show the estimates.
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The two direct colorimetric transformations, given in Eqs. (2-11) and (2-12) were also

used to estimate the CIELAB coordinates from each set of pixel values. The results are also

listed in Appendix H. As for the PCA-derived values, large errors were computed for these

methods.

Since these errors are large compared with those computed from model equations, a

simple modification of the signal processing was carried out. In most color-imaging

systems, a general image-processing path is identified following an analysis of the likely

(model) behavior of each element in the system. This, for example, would identify the form

of a needed matrix or non-linear transfer characteristic, and the order in which they operate

on the signal values. Prior to processing of images, however, the actual parameter values to

be used are derived based on the imaging of a test target, or other standard image data. In

this way, for example, elements of a color-correction matrix are calculated so that, for the

test data set, improved results might be obtained.

This procedure was followed for the most accurate of the methods under investigation,

the modified PCA technique. To do so meant computing an optimized matrix, A, based on

a set of captured signals. This was done based on independent digital images of a set of

Munsell color samples. The resulting matrix used for the spectral reconstruction via Eq. (2-

5) and (2-7) was

 

A = 

-1.20 0.45 -3.99 5.38 -7.02 2.96 -1.91

-0.53 -1.49 -0.92 0.25 0.37 1.26 0.55

-1.20 -0.30 0.89 2.90 -1.99 0.55 -0.87

-0.65 -0.25 2.19 -2.04 -0.23 -0.50 1.44

1.54 -1.56 -0.76 2.67 -1.76 -0.89 0.82

-0.98 1.15 -0.28 -0.96 2.58 -2.79 1.23

1.5 -2.26 2.6 -4.46 4.46 -1.85 0.092

-0.038 0.23 -0.86 2.60 -3.69 2.04 -0.28
 

. (5-1)
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This resulted in an approximately 21% reduction in the average CIELAB color-error, as

listed in Appendix H. Table 5-1 presents a summary of the above results. The observed

errors remained significantly larger than those computed from ideal or model signals. This

was largely attributed, particularly for low signal values, to the 8-bit quantization scheme

used in the camera, which will be discussed in detail in the next chapter.

Table 5-1: Summary of average ∆Eab
*  errors following PCA and the direct colorimetric

transformations based on ColorChecker pixel data. Column 5 is optimized for the camera
signals. CIE illuminant D65 and the 10û observer were used for the calculation, with each
value based on a sample of 400 pixels. Resulting mean errors are averaged over all 24
sample colors.

PCA 3x3 matrix 3x28 matrix PCAopt.

Ave. ∆Eab
*  5.1 6.7 12.5 4.0

Max. 11.0 16.1 36.3 6.8

B. Improving system accuarcy

As stated above, the 8-bit camera-signal quantization scheme, combined with imager

noise, introduced large errors into the signals used for image processing. The measure of

system accuracy has been taken as the mean error in the estimated colorimetric estimate

based on the sets of recorded pixel values. An alternative measure of colorimetric accuracy

was also investigated, however, based on reducing the influence of these errors. Instead of

processing the individual pixel values and computing the mean color error after image

processing, estimates were computed based on the mean camera signal values. While the

resultant color-errors would not be a measure of the accuracy of the multispectral image

data, they would indicate the level of system performance possible when the effective
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image noise is reduced, at the expense of spatial sampling. It should be noted that no

additional a priori information is needed for this estimation method, nor does it completely

eliminate the effect of signal quantization and noise.

From digital image files for the ColorChecker test chart, the average digital signal

values were computed for each of the signals, at each of the 24 locations of the test colors.

These are given in Appendix G. The image data included the previously used image areas,

but extended around them so that the sample size was 1000 pixels. These data were then

used to estimate the sample spectral reflectance vector using the modified PCA method.

Examples of two resultant reconstructed reflectance-factor vectors are shown in Fig.

5-3. An obvious improvement over the spectral estimates given in Fig. 5-2 is evident.

These two colors, however, present two different problems for the spectral reconstruction

from the camera signals. The reconstruction of the Neutral 3.5 sample in Fig. 5-3 (a)

shows a relatively large error. This is due to the fact that the spectral reconstruction is based

on a least-square fit that estimates the scalar principal components from the camera signals.

This simple matrix, however, minimizes the mean-squared difference over the entire

population. For samples with low reflectance factor values, the error will usually be a

higher fraction of the true value. This in turn results in higher CIELAB errors, due to the

slope of the cube-root component of the transformation. In addition, since the matrix is

optimized over the entire set of colors it is not guaranteed to give an unbiased estimate for

each, so the entire vector can appear to be shifted from the correct spectral reflectance

factor.
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Fig. 5-3: Examples of spectral reconstruction from 7 digital average camera signals using 8
basis vectors. (a) is for the Neutral 3.5 sample, and (b) for the Blue sample. The solid line
are the measured reflectance factors.

The blue sample, which showed the largest CIELAB error, has a sharp peak near 460

nm, but the reconstructed vector underestimates this peak. This is partially a result of using

camera spectral sensitivities that are wide (approximately 50nm) compared to the signal

variation near this peak. The acquisition of spectral information using the set of filters and

camera is analogous to the scanning a sample with an detector aperture and sampling the
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detected signal at roughly equal intervals. As with spatial scanning, the aperture limits the

bandwidth of signal (fluctuations) that will subsequently be recorded by acting as a low-

pass spectral filter. In our case the spectral aperture is approximately 50nm in width, and

the sampling interval is also 50nm. One way to reduce the smoothing effect of the spectral

sensitivities is to use narrower filters, but this has its limitations due to the introduction of

aliasing errors into the sampled spectral signal (Gaskill 1978). Narrower spectral sensitivity

functions would require a smaller sampling interval (i.e., more signals placed, say, at 30-

40 nm intervals). To demonstrate the contribution of the shape of the sensitivities to the

underestimation of the peak, Fig. 5-4 shows several estimates.
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Fig. 5-4: Estimated spectral reflectance factor for the Blue color sample using 8 basis
vectors, model camera-, and actual camera signal values.

The reconstruction from the eight basis vectors is seen to closely approximate the

measurement, but the calculation based on an ideal camera and set of interference filters

underestimates the peak and overestimates the function on either side. The reconstruction

based on the actual camera signals is seen to further underestimate the measured data. This

is due to all other sources of error, such as residual camera noise and photometric
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calibration error due to any record-to-record camera variability. Since the spectral

reconstruction from the camera signals is a weighted sum of basis vectors, stochastic noise

in the signal values will introduce error that is correlated over adjacent wavelength

locations. The net effect will often appear as a further smoothing of the estimate.

The CIELAB coordinates were then calculated from the reconstructed spectral

reflectance vectors, for CIE illuminant D65 and 10û observer. As a test of the robustness of

the technique, this was done several times, using several sets of eight basis vectors. In

addition to the set derived for the Munsell 37 set, one based on the actual ColorChecker

samples was used. These data were expected to share general characteristics with the target

but the optimum bases would differ, since one group (Munsell 37) is drawn from the

glossy set of Munsell color samples, and the other (ColorChecker) is from the matte

samples and would presumably represent different subsets from the ensemble of Munsell

pigments. In addition, basis vectors were calculated for a set of DuPont paint samples.

Table 5-2 gives a summary of the results of the above signal processing. The filters

listed for each of the sets are those that gave the best performance in terms of color-

difference errors. These results express the residual error in the camera signal values, after

photometric and illumination correction, in terms of a colorimetric error. It is concluded that

the observed level of performance is not very sensitive to the set of basis vectors, if chosen

from similar materials. From the standpoint of system design, it is of minor importance

how many basis vectors are used to derive the spectral reconstruction, since they are

intermediate parameters. It is natural to ask, however, about the relative influence of the

number of camera signals versus basis vectors. Fig. 5-5 shows a plot of the median and

maximum color-difference error as a function of the number of vectors used for the

ColorChecker set. It is observed that the values of camera signals limits the accuracy of the

colorimetric information beyond five signals for this set of colors.
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Table 5-2: CIELAB ∆Eab
*  errors for spectral reconstruction from experimental camera

signals for the Macbeth ColorChecker target via 3 sets of basis vectors. The numbers, (1 2
...) indicate which filter-signals were used, and were consistent for all sets. Eight vectors
were used for all calculations.

Basis set number of. filters mean median rms maximum

ColorChecker 8 1.68 1.74 0.86 3.44

7 (1 2 3 5 6 7 8) 1.80 1.81 0.95 3.70

6 (1 2 3 5 7 8) 1.82 1.77 0.90 3.40

5 (1 2 3 7 8 ) 2.02 1.82 1.17 5.19

4 (1 2 3 5) 2.30 1.20 1.34 5.90

Munsell 37 8 1.67 1.74 0.85 4.13

7 1.77 1.77 0.91 3.86

6 1.76 1.68 0.89 3.52

5 1.96 1.67 1.13 5.20

4 2.28 1.92 1.39 5.21

DuPont paints 8 1.70 1.64 0.83 4.31

7 1.77 1.79 0.83 4.27

6 1.79 1.68 0.83 3.57
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Fig. 5-5: Mean and maximum ∆Eab
*  following modified PCA spectral reconstruction from

camera signals, versus the number of basis vectors used. The set of seven signals was
used.
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C. Conclusions

Substantial average color errors were observed when estimating the spectral reflectance

factor and colorimetric coordinates from captured images from the experimental camera.

Using and optimized signal processing path for the PCA method yielded a modest

improvement. Reducing the effect of input image noise, and quantization by averaging the

input signals, when combined with an optimized signal path, however, resulted in color

errors of ∆Eab 
* < 2, still greater than those predicted by the model calculation of Chapter II.
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VI. IMPLEMENTATION: SIGNAL QUANTIZATION AND IMAGE 

NOISE

In this chapter the precision of the multispectral camera system is investigated. Direct

calculation of image noise is available through the statistics for nominally uniform areas of

the input image, and corresponding estimated parameters for each pixel. In addition,

attention is turned toward camera signal quantization and its contribution to the signal

uncertainty.

A. Observed camera-signal noise and quantization

The camera-induced image noise characteristics were first investigated by computing

the rms pixel-to-pixel signal fluctuations for the uniform areas of the color samples of the

ColorChecker target. To avoid the introduction of actual image optical (signal) fluctuations,

however, the rms noise was computed from digital images that were acquired with the

target out of focus.

As explained in Chapter IV, a single multispectral image the camera exposure time was

varied with filter-record to maximize the optical signal at the imager. This motivated a first

investigation into the extent to which image exposure time, i.e., CCD imager integration

time, influenced the image noise characteristics. The attempt was made to vary the exposure

time over a wide range, but to compensate for this by stopping down the lens. In this way,

the rms noise, could be compared for various camera settings, but at similar mean signal

levels. The camera was operated without an interference filter, but with two neutral-density

optical filters in front of the lens, so as to simulate signal levels equivalent to those used for

multispectral imaging. The combined optical density of the two filters was 1.1. The intent

was to evaluate the camera-induced noise, so the ColorChecker target was captured with

the lens focused approximately 0.5 m. behind the sample. Four images were acquired and
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the statistics computed. The results are shown in Fig. 6-1, and indicate that there was no

appreciable or consistent increase in image noise as the exposure time was increased over a

range of approximately 30:1. This was taken to indicate that the noise characteristics would

not vary between filter-records.
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f/16, 1/4 sec.

mean signal, counts

rms

Fig. 6-1: Observed rms noise levels for capture of ColorChecker target, for several images
taken varying the camera exposure and lens f/number settings.

Pooling the data from all eight image records, Fig. 6-2 shows the rms values plotted

against the mean digital signal value. Comparing these data with the simple model

characteristic of Fig. 3-10, or the form of Eqs. (3-31) and (3-32 b), relatively high noise

levels for low average signal levels were observed. Examination of the distributions of

signal levels for these dark samples, however, revealed several unpopulated signal levels.

This is evidence of an effective signal quantization interval greater than that implied by the

8-bit encoding of the digital signal at low signal levels. These missing values are listed in

Table 6-1, and are evident from the histograms shown in Fig. 6-3.
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Fig. 6-2: Observed rms noise for capture of ColorChecker target, with all eight image
records were pooled. Units are in digital counts [0-255].

Table 6-1: The unpopulated (8-bit encoded) digital signal levels that were observed for the 

camera images of several steps of a photographic step tablet.

step level mean unpopulated levels

1 15.1 1-6, 8-10, 12, 13, 15, 16, 18, 19, 21

2 36.3 28, 30, 31, 32, 34, 36, 38, 39

3 49.1 43, 45, 48, 51, 53

4 65.5 63, 65, 67, 71, 74,
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Fig. 6-3: Example histograms of pixel values for two uniform image areas (n = 400).

Referring to the camera architecture of Fig. 4-6, it was hypothesized that the coarse

image quantization was due to a discrete look-up table being applied prior to the final 8-bit

quantization. If there are equal numbers of equally-spaced levels on either side of the LUT,

then missing output values occur when the slope of table is greater than unity. More

specifically, the quantization interval is equal to the slope, if all units are kept in terms of

the nominal (8-bit) output quantization interval. Conversely, if we assume that the original

quantization is uniform, then the missing values give a clue as to the form of the table
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transformation, since each discrete output level is projected back to available primary

quantization level. The first step is to compute the effective quantization as a function of

output (8-bit) level. This was done by observing the histograms of uniform image areas

captured from the step tablet. These data were fit to an equation of the form

∆ = 16.6
(v + 5)0.56

where ∆ is the quantization interval and v is the mean signal value shown in Fig. 6-4.
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Quant.
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Fig. 6-4: Observed camera signal quantization interval in units of 8-bit counts.

The form of the first derivative of the quantization function (Fig. 6-4) is taken as the

transformation introduced by the camera LUT. This is shown in Fig. 6-5. It should be

noted that this is very similar to the camera photometric response that was evaluated directly

from camera signals, as described in chapter 4. The inverse of this characteristic forms the

photometric correction curve (see Fig. 4-7).
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Fig. 6-5: The internal camera look-up table that was estimated from the observed signal
quantization. The curve (dots) is the integral of the quantization data of Fig. 6-4. This is
compared with typical camera tables that compensate for CRT characteristics for γ = 1.8
(solid line) and 2.2 (dashed line).

The effective noise levels associated with primary signal detection and signal readout

can be estimated by propagating the observed rms noise levels of Fig. 6-2 back through the

inverse of Fig. 6-5, or the above photometric response. Since this is a univariate

transformation, this is equivalent to dividing the observed camera rms noise by the function

of Fig. 6-4. The results are shown in Fig. 6-6. These data can be used to model the

intrinsic imager noise in terms of the three components of Eq. 3-33,

 
σ = 0.24 + 0.015 v  + 3.78 x 10-6v2

 
. (6-1)
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Fig. 6-6: The result of propagating the observed rms image noise to effective imager noise
levels. The line indicates Eq. (6-1).

B. Error in spectral and Colorimetric estimates

The above analysis allows the modeling of the effective noise sources of the imager,

which is important if improved performance is to be addressed, as in chapter VII. Actual

captured images, however, are burdened with the observed levels shown Fig. 6-2. The

influence of this camera-signal noise on the estimates was computed directly from the

images captured for the ColorChecker chart, as described in Chapter VI. 

Following photometric, illumination, and dark signal compensation the spectra

reflectance factor was estimated for each pixel in the 24 sets of 400 pixel values. The RMS

variation in the estimated spectral reflectance for a set of 400 pixel values is shown in Fig.

6-7. The corresponding colorimetric errors derived from these spectral estimates and those

due to the two direct transformations are listed in Tables I-1 and I-2 in Appendix I. A

summary is also given in Table 6-2.
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Fig. 6-7: RMS error in the estimated spectral reflectance factor, based on modeled signal
path and set of 400 pixel values. Eight basis vectors and seven camera signals were used.

Table 6-2: Summary of the CIELAB errors for estimates computed from ColorChecker
pixel data, for PCA and the two direct methods. Column 5 is optimized for the (mean)
camera signals. CIE illuminant D65 and the 10û observer were used for the calculation, with

each value based on a sample of 400 pixels. Resulting rms and average ∆Eab
*  errors are

averaged over all 24 sample colors.

Sample σL* σa* σb* E[∆Eab
* ] E[∆Eab

* ]opt.

PCA 0.6 2.7 2.7 3.9 3.5
Simple direct 2.0 2.8 2.8 4.5
complex direct 12.2 12.2 3.8 18.2

These results indicate that the PCA-derived estimates exhibited the lowest average RMS

error. A comparison of the two direct methods, however, indicates the noise-penalty

associated with the complex model calculation. Consider the matrix of weights for the
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complex direct transformation, given in Eq. (2-12b). While the use of this model was

motivated by reduced model errors, as indicated in Table 2-3, the model data is effectively

Ôerror-freeÕ. The introduction of even minor bias or stochastic error into the camera signals

results in an amplification due to the variation in magnitude of the weighting coefficients.

This results in the addition, and more importantly, subtraction of large numbers which

leads to large errors in the result.

C. Verification of error-propagation analysis for camera signals

The observed error in CIELAB that results from the processing of actual camera

signals, summarized in Table 6-2, can be used to assess the validity of the error-

propagation analysis of Chapter III. This was done for each of the ColorChecker color

samples as captured by the seven-channel multispectral camera. As described above, the

signal values for each of 400 pixels were processed to estimate the sample spectral

reflectance factor. From these data the corresponding CIELAB coordinates were computed,

assuming CIE illuminant D65 and the 10û observer. From the resultant 400 CIELAB

coordinates the sample covariance matrix was calculated for each of the twenty-four colors.

The error-propagation technique was implemented by first calculating the covariance

matrix for the seven camera signals, Σs, for each color sample. The image fluctuations in

each signal were essentially independent, as indicated by a diagonal covariance matrix. This

is as expected, since each signal resulted from an independent camera image exposure,

although a fixed-pattern component could introduce covariance. The covariance matrix for

the camera signals was propagated to equivalent statistics in spectral reflectance factor by

Σr = ΦAΣsATΦT , (6-2)

where A is give in Eq. (2-9). The square-root of the diagonal elements of Σr give the rms
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error as a function of wavelength for the spectral reflectance factor, equivalent to the plot of

Fig. 6-7. From Σr the covariance matrix for the tristimulus values was calculated using

ASTM weights, M. As in Eq. (3-10) the tristimulus values covariance matrix is given by is

given by

Σ t ≅  MΣrMT, (6-3)

where the matrix of spectral weights is 

M = 
x1 y1 z1

xn yn zn
.

This was followed by the transformation to CIELAB. As in Eq. (3-16) the CIELAB

covariance matrix is given by

ΣL*a*b* ≅ NJf(t)Σ tJf(t)
T NT, (6-4)

where

Jf(t) = 1
3

 

µX
-2/3Xn

-1/3 0 0

0 µY
-2/3Yn

-1/3 0

0 0 µZ
-2/3Zn

-1/3

, and   N = 
0 116 0

500 -500 0
0 200 -200

 
.

Combining Eqs. (6-2)-(6-4),

ΣL*a*b* ≅ NJf(t)MΦAΣ sATΦT
MTJf(t)

T NT . (6-5)
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While the RHS of Eq. (6-5) includes ten matrix-multiply operations, it should be noted that

several can be pre-computed if the calculation is to be performed for several color samples.

For example the linear operations, MΦA and A TΦTMT could be computed once and

stored. The nonlinear steps involving Jf(t) and its transpose must be calculated for each

sample.

Equation (6-5) was evaluated for each of the ColorChecker color samples, based on the

observed camera-signal covariance matrix, Σs. Good agreement was found between the

sample covariance matrix calculated from the sets (n=400) of pixel data, and the results of

the error-propagation. For example, for the Cyan sample the sample covariance matrix was

ΣL*a*b* = 
0.17 -0.47 0.26
-0.47 4.58 -1.75
0.26 -1.75 1.71

 .

The equivalent second-order statistics computed via Eq. (6-5) are

ΣL*a*b* = 
0.17 -0.48 0.27
-0.49 4.66 -1.79
0.27 -1.80 1.73

 .

A measure of the variation (in 3-space) expressed by the covariance matrix is the

generalized variance, which is the determinant of the covariance matrix (Jackson 1991).

The volume associated with the error-distribution is proportional to the square-root of the

generalized variance. Table 6-3 shows the % difference in the two calculations of rms

CIELAB fluctuations and generalized standard deviation. The small differences indicate

agreement for all  ColorChecker color samples. Ignoring signal quantization, the 400 signal

values for each color represent a sample from the population values, if the fluctuations are

seen as stochastic. Therefore the covariance matrix computed directly from these values, is
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actually an estimate based on a sample size of 400, and subject to a sampling error which

will depend on the underlying distribution of pixel values.

Table 6-3: Comparison of the standard deviation in the CIELAB coordinates for sample
pixel data (n= 400) and error-propagation methods. The fourth column is for the
generalized σ, and the difference is calculated by (σerror prop.-σpixel)/σpixel.

% RMS difference
Color σL* σa* σb* gen. σ

Dark skin -0.8 -1.9 -0.8 -1.5

Light skin -0.9 -0.8 -0.1 1.0

Blue sky -0.2 -0.1 0.4 0.2

Foliage 0.2 0.2 -0.9 -1.1

Blue flower 0.6 0.9 0.2 0.8

Bluish green -0.4 0.3 -0.8 0.4

Orange 0.1 -1.5 -1.5 -3.0

Purplish blue 0.9 2.0 1.3 1.9

Moderate red -1.0 -1.2 -1.9 -1.4

Purple 0.1 -0.9 -0.9 -1.8

Yellow green -0.5 0.1 -0.6 -0.2

Orange yellow -0.8 -1.3 -4.5 -5.4

Blue -0.1 -1.4 -0.3 -0.8

Green 0.1 -0.3 -0.4 -0.2

Red -1.0 -1.7 -1.3 -2.4

Yellow 0.4 -0.5 -2.8 -3.5

Magenta 0.9 0.6 0.4 0.4

Cyan 0.7 0.9 0.5 0.7

White 0.2 -0.5 0.2 -0.2

Neutral 8 -0.8 -2.0 -1.0 -1.6

Neutral 6.5 0.1 0.6 -0.4 0.6

Neutral 5 -0.5 -0.7 -0.2 -0.6

Neutral 3.5 0.7 -0.2 0.4 -0.1

Black -2.8 -2.1 -3.1 -4.8
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D. Conclusions

The rather coarse camera-signal quantization lead to several unpopulated low signal

levels. This in turn increased the apparent rms noise. Despite this, the modified PCA and

simple direct signal paths yielded moderate rms noise levels, particularly when compared

with the mean (bias) errors reported in Chapter V. A substantial increase in colorimetric

image noise was propagated for the complex direct transformation, as a consequence of the

extended form and coefficients of the defining equations.

A comparison of second-order image noise statistics derived from processed pixel data

and error-propagation indicated good agreement for all ColorChecker color samples. This

was taken as indicating that the multivariate error-propagation analysis can be applied over

a wide range of image acquisition and image processing applications.
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VII. MODELING IMPROVED CAMERA PERFORMANCE

In the previous chapter it was demonstrated how the experimental camera could be used

to derive both spectral and colorimetric image information. The observed imager noise and

signal quantization, however, place limitations on both the system accuracy and precision.

This will now be addressed in a systematic way by assessing the errors due to both imager

noise and signal encoding. The objective is to provide insight as to the influence of specific

design choices, such as number of bits used to encode the signals, on system performance.

After addressing signal quantization errors, the multivariate error propagation of Chapter III

is applied to the system model and signal processing described in Chapter II. In addition,

these results will then be discussed for the multispectral imaging of metameric color

samples.

A. Quantization

Image quantization is the encoding of each sample of a continuous sampled signal, e.g.

radiance, as one of a limited number of discrete values. This represents a loss of

information, in that an error is introduced when the quantized signal is interpreted as, or

compared with, the original sampled image. The simplest and most common procedure is

uniform quantization. Here each sample is compared to a set of levels that are equally

spaced over the available signal range, and assigned to the nearest one. Nonuniform

quantization is also common, however, as part of image compression (Pratt 1978) or as a

companding step to compensate for later elements in an imaging system, such as the

photometric response of a CRT display (Berns et al.1993 ). Nonuniform quantization is

usually implemented in two steps; a primary uniform quantization followed by a discrete

transformation, as shown in Fig. 4-6.
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Image quantization has historically been analyzed as both a source of stochastic and

deterministic error. These two views of the same signal transformation arise from differing

imaging objectives. For systems where objectives can be cast in terms of signal detection

and statistical information preservation, such as medical imaging, reconnaissance, and

astronomy, then the error introduced by quantization is often seen as an added signal-

independent stochastic source with an approximately uniform probability distribution. The

width of this distribution is equal to the quantization interval (Oppenheim and Schafer

1975, Burns 1989, Holst 1996) corresponding to the range of a rounding error, i.e.

-∆v
2

 ≤ e ≤ ∆v
2

. For a random variable of uniform or rectangular distribution, and width

parameter ∆v, the variance is given by (Dougherty 1990)

σ 2 = ∆v 2

12
.

The rms quantization noise is found from the square-root of the RHS of this equation,

σ = ∆v
12

. (7-1)

For the case of uniform quantization using b bits (2b discrete levels) to encode each pixel,

the interval has a width (vmax - vmin)/2b . Eq. (7-1) then becomes

σ = 
(vmax - vmin)

2b 12
, (7-2)

where the available signal range is vmax - vmin. As an example, the quantization noise

introduced by 8-bit encoding is 0.0011(vmax - vmin), or 0.29 digital counts on a [0-255]

scale.
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Viewing error introduced by signal quantization as a stochastic noise source ignores the

fact that all the resulting pixel values are rounded to a finite number of levels. When

viewed, a quantized image, particularly in slowly-varying regions or graphical elements,

shows the discrete levels as artifacts that detract from the image information. Consequently,

it is the effective quantization interval that is often compared with (visually) detectable

intensity or color-differences (Stokes et al. 1992, Sezan et al. 1987). For many

applications the requirement that each quantization interval is not visible, i.e., not introduce

visible artifacts, is more stringent than one based on a comparison of the rms quantization

noise with image fluctuations from other sources, such as scene content and image

detection.

When image signals are quantized prior to other signal processing, the resultant error

can be propagated through the signal path in a similar way to that used for stochastic error

propagation. Now however, the errors form a finite set , are deterministic, and represent a

bias that will usually depend on the signal levels. For an m-record image acquisition, the

set of quantization intervals for a given signal location (in m-space) is that spanned by

incrementing and decrementing each of the m signals by one interval, and comparing it

with a reference location. This results in 3m - 1 intervals. For a given system the effective

quantization intervals can easily be computed by processing them as ordinary pixel values.

1. Three-channel Camera/colorimeter

Consider the simple three-record colorimeter which detects sample tristimulus values,

X , Y, Z as described in Chapter III.A.5. For a given signal quantization scheme and

reference color, the set of 33 = 27 signal values is 
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{(Xref, Yref, Zref), (Xref + ∆X, Yref, Zref), (Xref - ∆X, Yref, Zref),
 

(Xref + ∆X, Yref + ∆Y, Zref), , (Xref + ∆X, Yref + ∆Y, Zref + ∆Z)},

where (Xref, Yref, Zref) are the reference signal values and (∆X, ∆Y, ∆Z) are the quantization

intervals for each signal. Each of the above set of signals can be transformed into a

secondary color-space and the set of 26 differences (from the reference signal) computed.

This was done for the transformation from tristimulus values to CIELAB. Figure 7-1

shows the results of uniform quantization using various numbers of encoding bits for the

achromatic (neutral) axis in CIELAB. The quantization color-difference is presented as the

average ∆Eab
*  , which will be a function of the reference L* value because of the nonlinear

transformation between X , Y, Z and L *, a*, b* as in Eq. (3-13).
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Fig. 7-1: Average quantization interval color-difference,∆Eab
* , that results from the uniform

quantization of tristimulus values, 8, 10 and 12-bit encoding for achromatic colors.

To minimize the visibility of quantization intervals it can be useful to quantize a set of

color signals in an approximately perceptual color-space such as CIELAB, which implies a
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nonuniform spacing of levels. This can be accomplished by preceding the uniform

quantizing step by a continuous transformation, e.g., via a nonlinear analog amplifier.

Alternatively, one can first quantize the continuous input signal using a m levels and then

perform a discrete look-up table (LUT) transformation from m to n levels, as shown in

Fig. 7-2. The output quantization intervals can be interpreted in terms of corresponding

input signals by projecting each output level back to the continuous input. The effective

quantization intervals take the form of the discrete derivative of the discrete transformation.

If m>>n then the resulting m-level quantization will be approximately equally spaced in

the transformed signal-space.

uniform
quantizer

input
signal

m levels n levels

output
signal

Look-up table

input

Fig. 7-2: Nonuniform quantization scheme using a uniform quantizer and a discrete m-to-n
look-up table transformation.

Consider quantizing a signal, x, so that 256 levels are equally space as a power

function

y = xp ,

where p is a constant. The average quantization interval for the achromatic, L*, axis was

calculated for several values of p, {1/3, 1/2.2, 1/1.8}. The cube-root function corresponds

to the nonlinear step in the XYZ -> CIELAB transformation, and the other two exponents

are similar to those commonly used to compensate for CRT display characteristics, i.e.,

γ = 1.8, 2.2. These results can then be compared with those shown previously for p = 1. ,
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as shown in Fig. 7-3, for 10-bit (1024 levels) quantization. The cube-root transformation is

seen as equalizing the quantization interval in CIELAB, as might be expected, since the L*

value depends solely on the single tristimulus value, Y.

20 40 60 80 100

L*

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Average 

.33

.45

.56
 1

exponent

∆Eab
*

Fig. 7-3: Average quantization interval color-difference, ∆Eab
* , that results from the

nonuniform, power-law quantization of tristimulus values and 10-bit encoding for

achromatic colors.

The above analysis can be generalized for a camera with spectral sensitivities that are

not color-matching functions. Returning to the example camera with spectral sensitivities

given in Fig. 3-9. To calculate the colorimetric coordinates of image signals, they are

subjected to the matrix transformation,

t = 
0.321 0.666 0.425
0.106 1.140 0.125
-0.039 -0.076 4.399

 
R
G
B

where t = X , Y, Z T . The previous calculations were repeated where the signal
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quantization takes place prior to applying the matrix. The results, given in Fig. 7-4, show

similar characteristics to those of Fig. 7-3.

20 40 60 80 100

L*

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Average 

.33

.45

.56
 1

exponent

∆Eab
*

Fig. 7-4: Average quantization interval color-difference, ∆Eab
* , for the example camera

when the signals are quantized according to a power-law using 10-bit encoding. The
transformation requires the matrix operation, and the results are for the achromatic colors.

2. Multispectral Camera

The influence of camera signal quantization on system performance for a multispectral

camera can be addressed in the same way as for three-channel image capture. Now,

however, the set of quantization intervals about a given color is much larger. For the

seven-filter camera, 37 - 1 = 2186 intervals need to be investigated. This was done in a

computed experiment as outlined in Fig. 7-5. The camera signals for each of the twenty-

four ColorChecker samples was calculated assuming the copy stand source, whose spectral

power distribution is shown in Fig. 2-7, and the camera-filter sensitivities of Fig. 2-2.

These signals were then quantized, either uniformly (p = 1) or as a cube-root function (p

= 1/3). The remaining signal path included a modified PCA spectral reconstruction and
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transformation to CIELAB, for illuminant D65 and 10° observer. The computed average

color-difference due to the signal quantization are given in Table 7-1. By introducing the

cube-root transformation, the average and median ∆Eab
*  was reduced by about 0.11. This

had less effect when ten or twelve-bit encoding was used. As might be expected, increasing

the bits/signal used (thereby increasing the number of levels by a factor 2 per bit) reduced

the CIELAB quantization intervals by about the same factor.

sample
spectral
reflectance

copy stand
illimination

camera spec. 
sensitivity S p quantization

 n levels

S -p Φ

camera
 signals

± 1 count for
each signal

ASTM
weights

XYZ  →CIELAB
basis vectors

estimated
    scalar
princ. comp.

X , Y, Zspec. refl. L*, a*, b*

∆Eab
*

Fig. 7-5: Analysis of signal quantization for the multispectral camera and spectral
reconstruction via the modified PCA method.
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Table 7-1: Quantization interval as CIELAB color-difference values, for several levels of
signal encoding and signal selections. Calculation was based on simulation of multispectral
capture of ColorChecker sample colors and modified PCA spectral reconstruction. See text
and Appendix I for more details.

signals bits/signal exponent mean median max.

7 (1 2 3 4 5 6 7) 8 1 1.08 1.03 2.38

8 1/3 0.95 0.91 2.12

10 1 0.27 0.26 0.59

10 1/3 0.28 0.23 0.53

7 (1 2 3 5 6 7 8)* 10 1/3 0.28 0.27 0.63

5 (1 2 3 5 7) 10 1 0.29 0.29 0.54

5 (1 2 3 7 8)* 10 1 0.37 0.35 0.67

12 1 0.09 0.09 0.17

* These were the 5 and 7-signal sets which minimized the average color-error as computed 
from the  average experimental camera signals (see Table 5-2).

B. Imager Noise

The multivariate error propagation analysis developed in Chapter III provides a way of

estimating the first two statistical moments of the stochastic error that is introduced into the

image signals at any subsequent point in the signal path. The analysis is applied here to

help set imager noise limits, based on the required system precision. The computed

example of section III-5 was presented in detail, but this was for a single (mean) color-

sample and assumed no specific physical source of the stochastic error. A model for CCD

imager noise is available, however, as also described in section III-B. Moreover, imager

noise characteristics that were observed followed the form of this model as summarized in

Chapter III, when account is taken of the signal quantization. The imager noise model will

now be applied to the multispectral camera and signal processing path. Consider an

electronic detector whose noise characteristics are governed by dark signal and shot-noise
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components. A common noise figure for such detectors is the ratio of maximum signal to

rms dark noise, the so-called dynamic range. Note that this is a form of maximum signal-

to-noise ratio, 
µ

σdark
, where µ is the (mean) signal. As an example, let the dynamic range be

equal to 1200, and the maximum charge be 60,000 electrons. In additional, it is assumed

that the imager noise fluctuations between signals are independent. This detector is used in

a multispectral camera with the illumination and spectral sensitivities observed for the

experimental camera described in Chapter IV. The rms noise can be expressed as a function

of the signal level for each signal,

σ2 = σdark
2  + k µ (7-3)

where σdark = 1/1200 and k = 1/ 60,000.

It is possible to investigate the effect of this imager noise on the resultant estimated

spectral reflectance and derived colorimetric coordinates, by identifying the signal path. The

case to be addressed here is that identified as the set of five signals that minimized the

average CIELAB color-error computed from the experimental signals, the set {1, 2, 3, 7,

8}. The camera signal covariance matrix is has (5x5) diagonal form, with the diagonal

elements given by Eq. (7-3). Following the modified PCA spectral reconstruction method

described in Chapter II, the scalar principal components are calculated by

α = 

-0.76 -0.63 -0.89 -1.41  -1.80 -0.65 -1.56  -1.74
 1.29   2.12 -1.00 -1.01  1.66   -1.49  1.75 -0.66
-0.06 3.18   2.13   -4.75 3.04   -3.50   1.22   -0.27
-0.31 -0.55 0.56  -0.10 0.001 0.024 1.03 -1.23
 0.87  0.24  -0.83 0.31  -0.349 0.43  0.26  -0.63

 

s1
s2
s3
s7
s8

, (7-4)
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where the matrix transformation is found as a least-square fit between the between camera

signals and principal components computed via Eq. (2-8).

The spectral reconstruction is computed as

r = ΦAt ,

where r is the 31-element spectral reflectance column vector (400-700 nm in 10nm

increments) and Φ is the matrix of basis vectors. The corresponding covariance matrix for

the estimated spectral reflectance is given by

Σr = ΦAΣtATΦT

where Σt is the covariance matrix for the five camera signals. The multispectral capture and

reconstruction of the ColorChecker color samples were simulated in this way. Figure 7-6

shows the results of spectral reconstruction and noise propagation for the cyan color

sample. The rms noise vector is the square-root of the diagonal elements of Σr.

If the spectral reflectance image information is processed to yield the corresponding

CIELAB coordinates, the noise statistics can also be computed. For the cyan sample of

Fig. 7-6, the corresponding mean and rms tristimulus values, X , Y, Z, are

µ t = 0.15, 0.21, 0.39
 

σ t = 0.0020  0.0015  0.0021  .

Transformation to CIELAB coordinates, for CIE illuminant D65 and 10° observer,

results in
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Lab
* a* b *  = 53.35 -30.50 -22.98

σL* σa* σb*  = 0.16 1.08 0.38

E[ ∆Eab
* ] = 0.96

where the statistics are on a per pixel basis. The resulting statistics for all color samples in

the set are given for this case of detector noise and signal processing in Appendix L. Table

7-2 summarizes the resulting CIELAB stochastic errors for several levels of detector noise.
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Fig. 7-6: Example of spectral reconstruction of the ColorChecker Cyan color.(a) and (b)
show signal (solid) and rms noise (symbol). (c) shows the signal-to-noise ratio.
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Table: 7-2: Average of calculated stochastic error statistics for ColorChecker samples, due
to detector noise (dark- and shot-noise model). The imager dynamic range is
(max. signal/σdark) and the maximum signal is in electrons. The CIELAB transformation,
following spectral reconstruction, is for CIE illuminant D65, and 10° observer. The last
column is the mean color-difference.

camera dynamic max. average over colors
signals range signal σL* σa* σb* E[∆Eab

* ]

7   (1 2 3 5 6 7 8) 1200 60,000 0.15 0.66 0.56 0.89

6   (1 2 3 5 7 8) 1200 60,000 0.22 1.35 0.55 1.27

5   (1 2 3 7 8) 1200 60,000 0.18 0.91 0.46 0.90

4   (1 2 3 5) 1200 60,000 0.18 0.54 0.47 0.74

5 600 60,000 0.23 0.17 0.60 1.17

1200 100,000 0.15 0.75 0.38 0.75

1200 150,000 0.13 0.66 0.34 0.67

1800 150,000 0.12 0.58 0.29 0.58

7 1200 100,000 0.13 0.55 0.47 0.77

1200 150,000 0.11 0.48 0.41 0.71

1800 150,000 0.10 0.42 0.36 0.65

It is shown that as the detector noise levels increase, so do the CIEAB errors, as

expected. An interesting observation is the fact that changing the number of camera signals

used in the spectral reconstruction does not necessary increase or decrease the resultant

image CIELAB noise significantly. This is due to the changing camera matrix, A, that

changes as the signals on which the spectral reconstruction is based are varied. To

understand this consider the seven-signal reconstruction using signals (1, 2, 3, 5, 6, 7, 8).

The A matrix is 
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A7 = 

-0.868 -0.456 -1.93 1.26 -3.13 1.62 -1.98

-0.810 -1.17 -1.63 1.35 -0.121 0.315 1.53

-1.27 -0.434 1.23 2.44 -1.9 1.34 -1.51

-0.565 -0.54 2.59 -2.76 0.645 -1.74 2.21

1.98 -1.89 -0.872 3.19 -2.37 -1.05 1.13

-1.16 1.28 -0.316 -1.39 4.12 -4.88 2.22

1.91 -2.87 3.39 -6.56 7.58 -3.9 0.546

-0.0699 0.420 -1.40 4.37 -6.59 4.01 -0.721

 .

The equivalent matrix that is required for a 6-signal spectral reconstruction is 

A6 = 

-1.02  -0.43  -2.6 -2.71  -1.52  2.79

-0.824 -1.43  -2.86  -1.79  1.22 5.14

-1.38  -0.745 -0.676 -3.73  -1.64  8.06

-0.432 -0.227 4.59 2.25 2.22 -8.55

2.16 -2.86  -4.33  -8.86  -0.621 14.7

-0.639 0.628  -0.668 -0.911 -0.0353 1.57

2.23 -2.1 8.4 12. 0.719  -21.2

-0.412 0.173  -4.1 -7.22  -0.0289 11.6

 .

While these two signal processing paths gave very similar spectral reconstructions and

colorimetric accuracy, presence of large, particularly off-diagonal terms such as 12.0 (7, 4)

and -21.2 (7, 6) results an increase in the resultant error in the final signal. In this case the

mean color-difference increased by about 40%.

C. Application to Metamer Characterization

As a final application of the previously developed modeling of both signal processing

and noise propagation, consider the imaging of metameric samples. These are color

samples that, although not identical in their spectral reflectance factor, appear* to have the

* are colorimetrically identical, having the same tristimulus values, X, Y, Z.
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same color under a given illuminant. A three-channel colorimetric camera or colorimeter

would see the samples as having the same color, if imaged under the specific illuminant. A

multispectral camera, however, would be intended to identify spectral mismatches. The

objective here is to investigate the extent to which the multispectral camera  might be

expected to detect small color-differences, given the limitations of spectral reconstruction

error and image noise.

To this end, eleven of the color samples from the Munsell 37 set where chosen as

references. A tristimulus matching algorithm based on Kubelka-Munk turbid media theory

(Berns et al.1988) was then used to design a set of ten metamers for each of the reference

samples. The metamers were designed as mixtures of colorants from a data-base of DuPont

acrylic-enamel paints, and characterized by a spectral reflectance-factor vector. Each set of

metamers matched the corresponding reference sample tristimulus values under illuminant

D65 and the 2° observer. Fig. 7-7 shows the reflectance factors for an example reference

(5BG3/6) and set of computed metamers.

Since the sets of metamers are not spectral matches to the reference samples, they

cannot be expected to match under another illuminant or for another observer. Table 7-3

lists the average CIELAB color difference between reference and metamer that would be

observed under illuminant A for the 2° observer. The fifth column is based on an average of

ten metamers.
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Fig. 7-7: Reflectance factors for one reference (5BG3/6) and the set of computed
metamers.
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Table 7-3: CIELAB coordinates for the reference samples, and average color difference
between each and its set of metamers under illuminant A, and the 2° observer.

Sample L * a* b* ∆Eab
*

N1.5 14.68 -0.02 -0.20 3.19

N3.5 35.74 -0.03 0.32 4.75

N4.5 46.41 -0.13 0.31 5.55

N5.5 57.03 -0.17 0.31 4.76

N7.0 72.54 -0.36 0.29 3.42

N8.5 86.96 -0.14 0.42 1.21

5G3/6 28.81 -29.11 2.89 3.25

5BG3/6 27.33 -30.05 -13.63 2.55

5B3/6 27.25 27.01 -28.95 3.42

5RP5/12 57.26 52.29 5.88 4.21

5YR3/6 53.45 20.69 35.77 5.53

The imaging and capture of the sets of metamers was modeled in two computed

experiments. In each case model camera signals were calculated using the analysis used in

Chapter 2, and device noise model of Chapter 4. A signal processing path was then chosen

for spectral reconstruction and transformation to CIELAB coordinates. The statistical

moments of both the signal and noise were propagated through this path. A statistical test

was then applied to the resulting CIELAB coordinates to determine whether the derived

metamer pixel coordinates were significantly different from those for the reference sample.

The first experiment was aimed at assessing to what extent the camera could

differentiate between the metamers and the corresponding reference samples, if all were

captured under the illuminant (D65) under which they were visually identical. If perfect

spectral reconstruction were achieved and no detector noise introduced, all metamers would

clearly be seen as different from their corresponding reference samples, when expressed as
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CIELAB coordinates for a different illuminant. Errors in the mean signals, representing

bias, and stochastic variation combine, however, to make some small color differences

undetectable. In the same way, some detected differences that are introduced due to the

above system limitations should be ignored.

Since the signal and noise propagation techniques developed for the system result in

both mean vector and covariance matrix, the evaluation of the derived output values can be

cast as a multivariate statistical test for a difference in the mean CIELAB coordinates. This

test, based on a multivariate analysis of variance, (MANOVA), (Johnson and Wichern

1992). Statistical tests of this nature are usually applied using sample statistics, i.e, the

sample mean and covariance. Under the current analysis, however, the population

statistics are calculated via the signal and noise propagation analysis. One interpretation of

this would be that no statistical test is necessary, since the mean vectors are known. In this

case any difference, no matter how small, should be taken as real (significant). The

approach taken here was to apply the test to statistics based on a small image area, e.g., a

ten-pixel neighborhood. The calculated CIELAB moments for each reference and metamer

pair were taken as those observed in a small area of the image corresponding to an object in

the scene. The modeled moments were taken as these estimates of the mean and covariance,

allowing the test to be applied.

The first experiment was designed to evaluate the extent to which the model

multispectral camera could detect color differences between metamers. For each of the

metamers and reference samples the eight camera signals were computed for an illuminant,

D65, under which they had identical tristimulus values. The modified PCA method was

then used to estimate the spectral reflectance factor for each sample. The CIELAB

coordinates were then computed for illuminant A and the 2° observer for each reference and
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metamer. In addition, the detector image noise was modelled and propagated from camera

signal to CIELAB. The results of applying the MANOVA test for significance in the mean

metamer coordinates from those for the corresponding reference are given in Table 7-4.

The test was based on sampling a ten-pixel neighborhood and a probability level of 0.99.

The fourth column gives the percentage of metamers for which the null hypothesis, that

there was no difference, was rejected. Since, under illuminant A the metamers have

different coordinates than the corresponding reference sample, a high rate of rejection

indicates that the multispectral camera could correctly identify these differences. From these

results it can be concluded that more than five camera signals are needed to reliably detect

color-differences of this type. In addition, for the noise levels included, a dynamic range of

1200, and shot-noise equivalent to a maximum signal of 100,000 electrons are required.

Table 7-4: Results of the multivariate test (0.99 level) for significance difference between
the mean reference and corresponding metamer CIELAB coordinates for illuminant D65,
based on the camera model in experiment 1.

camera dynamic max. %
signals range signal rejected

7 (1 2 3 5 6 7 8) 600 60,000 78.2

1200 100,000 96.4

1800 150,000 99.1

5 (1 2 3 7 8) 600 60,000 52.7

1200 100,000 62.7

1800 150,000 74.6

The above results appear to indicate that a camera with these characteristics could be

used to evaluate these small color-differences. It should be noted, however, that (mean)
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estimation errors due only to the filter choice and basis vector reconstruction will tend to

increase the percentage of samples for which the null hypothesis is rejected. The second

computed experiment was aimed at identifying whether samples would provide color

matches. For each of the metamers and reference spectral reflectance factors, the camera

signals were computed for illuminant A. The same signal processing path was used, except

that CIELAB coordinates were computes for illuminant D65, under which the metamers and

corresponding reference sample would be expected to have the same coordinates. The

results of the MANOVA tests for this experiment are shown in Table 7-5. In contrast to the

first experiment, a low rate of rejection would indicate positive outcome. From the relative

high rejection ratio, except for one case, it can be concluded that this is a challenging task

for this type of camera, but that more than five camera signals are needed. These statistical

tests were performed in the same way for a signal based on a ten-pixel image area.

Table 7-5: Results of the multivariate test (0.99 level) for significance difference between
the mean reference and corresponding metamer CIELAB coordinates for illuminant A,
based on the camera model in experiment 2.

camera dynamic max. %
signals range signal rejected

7 (1 2 3 5 6 7 8) 600 60,000 4.5

1200 100,000 1.82

1800 150,000 10.9

5 (1 2 3 7 8) 600 60,000 30.0

1200 100,000 49.1

1800 150,000 62.7
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VIII. DISCUSSION: SUMMARY CONCLUSIONS AND 

RECOMMENDATIONS FOR FURTHER STUDY

A model multispectral camera and matrix-vector description of image capture have been

described. These were then used to develop several approaches to the processing of the

camera signals for spectral reconstruction. Interpolation methods were seen to yield poorer

results than either the modified PCA method or the complex form of direct colorimetric

transformation.

From the general analysis of error propagation in Chapter III, the first two statistical

moments of stochastic errors can be analyzed in current color-spaces and through many

color-image processing transformations. In addition to the magnitude of the signal

variance, the propagation of the covariance between sets of signals has been described. By

applying these error propagation techniques, variation due to measurement precision can be

compared with the effects of experimental variables. This is based on the calculated or

observed covariance matrices and underlying probability density functions. The inverse of

many color-signal transformations of current interest can also be addressed in the same

way. As demonstrated, a given tolerance of average ∆Eab
*  or ∆E94

*  can be related to an

equivalent uncertainty in tristimulus values, other sets of detected signals, or image pixel

values

Modeling of the noise characteristics of color-imaging devices can be combined with

the above error-propagation analysis to predict signal uncertainty at any point in a system.

Since physical devices include correlated noise sources, and the processing often combines

signals, analysis of signal covariance is again included. By applying these methods, the

statistical performance of multispectral and three-channel image acquisition systems can

predicted.
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The experimental multispectral camera was assembled using a set of interference filters

and a digital camera. This was used to capture sets of images and successfully estimate

both spectral reflectance factor and colorimetric specification. The accuracy achieved in

these experiments was within an average error of ∆Eab
* ≤2 (maximum < 3.5) for several sets

of basis vectors for the ColorChecker test target. This required the use of five or more

camera signals. These results are similar to those achieved in previous studies (Saunders et

al. 1990) and are within reach of the required color-accuracy identified by several workers

(Stokes et al. 1992, Jung 1993). While model (ideal) camera calculations show increasing

accuracy using up to eight basis vectors for the modified PCA method, processing of actual

camera signals did not benefit from more than four bases.

The experimental camera was also analyzed from the standpoint of its image-noise

characteristics. Despite somewhat coarse signal quantization at low signal values, a model

of the intrinsic stochastic noise associated with the imager was developed. This was later

used to model the propagation of this signal uncertainty through the signal path. It was

concluded that the resultant CIELAB fluctuations were not a strong function of the number

of camera signals used, for the case of uncorrelated errors. An effective maximum shot-

noise equivalent to 60,000-100,000 detected photons would limit the mean error ∆Eab
* ≤1.

A direct comparison of the second-order statistics of camera image noise was made

with those computed using the multivariate error-propagation analysis. The latter was

shown to accurately predict the results of actual signal processing.

Signal quantization was also addressed in terms of the error introduced into the spectral

reconstruction and subsequent colorimetric transformation. It was concluded that for an

average CIELAB error ∆Eab
* ≤1, 10-bit quantization was sufficient, but 8-bit encoding leads

to average errors of about 1 and maximum value of 2. Nonlinear quantization in the form of
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a power-law showed minor improvements.

The use of an electronic camera designed for general digital photography and

photojournalism, and the set of interference filters indicated how sequential-frame

multispectral images can be acquired. The system was far from rugged, however, since

each filter was manually placed in front of the camera lens. It is natural to consider using an

automated filter wheel to improve the efficiency of image capture and reduce the risk of

filter damage. A potentially more flexible approach would be to employ a tunable liquid

crystal filter (CRI 1992, Sharp and Johnson 1996a, 1996b). Recently developed devices

have been reported with switching times of less than a millisecond. With this performance,

the limiting factor for speed of image capture would be the access to memory used for

image storage in the camera.

Further investigation of image noise in multispectral image acquisition could benefit

from an extension of the methods applied here to functions of spatial frequency. The well-

established techniques of noise-power spectrum estimation and modeling could then be

used to express image noise in terms comparable to the required signal bandwidth. One can

think of the rms noise value is as a relative noise measure. When placed in the context of

the signal bandwidth it becomes more meaningful. For example, an rms CIELAB error of 3

may be acceptable for an application aimed at identifying a scene illuminant, when it can be

done from object(s) sampled by fifty or more pixels. One way to compare signal and noise

components is to express the noise as a variance (rms) per unit area of the image when

possible. This is consistent with a frequency-domain description provided by the noise-

power spectrum when given as variance per cy/mm, as is often done.

This has long been understood by those addressing the fundamental limits to imaging

efficiency where, e.g., input exposure is at a premium (Dainty and Shaw 1974). This leads
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naturally to the development of signal-to-noise ratio requirements being expressed as an

effective quantum-limited performance in noise-equivalent quantum (NEQ) exposure

(Shaw 1963, 1975, Shaw and Burns 1984, Burns 1990).

While there is no single noise criterion for multispectral systems, it is possible to

investigate the requirements of several color-imaging applications. The requirements for

museum imaging, artwork printing, color-appearance modeling or trichromatic device

characterization will likely differ in terms of system precision. Few will require cooled

detectors and 14-bit signal encoding. A possible approach is to project the required output

characteristics backwards to the sources of bias and stochastic error, as was illustrated for

the colorimeter example in Chapter III.

It is also useful to consider how the multispectral image capture and processing might

be incorporated into current and future standards for color image communication. The

approach suggested by Keusen (1997) calls for storing multispectral images so that three of

the image records correspond to signals required for the more common three-channel color

imaging such as X, Y, Z or L*, a*, b*, referenced to a standard illuminant. At each

pixel these would be the scalar weights associated with orthogonal basis vectors for the

three CIE color matching functions and illuminant, or simply a linear combination of the

colorimetric coordinates. Other image records would allow spectral reconstruction based on

higher-order basis vectors in the same way as demonstrated in this work. Related

investigation of alternative basis vectors has recently been reported (Praefcke 1995)

For some procedures, implementing image processing algorithms that are compliant

with established file formats and transforms requires approximations and therefore

introduces error. Comparison of the magnitude of this error with that due to other sources

is valuable, particularly when selecting which of several implementations to pursue. For

example, the methods used here could be compared with a series of allowable image
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transforms that make up the device profiles under the framework being developed by the

International Color Consortium (ICC) (1996). The most recent revision (3.3) of the ICC

Profile Format Specification accommodates up to 15-channel image information in the list

of Color Space Signatures. The reference for the definition of color signal transformations,

the Profile Connection Space (PCS), is X, Y, Z or L*, a*, b*. The standard does

provide, however, for DeviceLink profiles for transformations directly between devices. In

this case the PCS can be taken from the full set of Color Space Signatures. In addition, the

standard includes the use of various Named Color Profiles to denote variations for a single

device. It may be possible to employ this framework to allow multiple image processing

paths from a single stored multispectral image file for various appearance model

parameters.

Since the allowed signal processing steps in the ICC profiles include one-dimensional

look-up tables, (3x3) matrices, and n-dimensional look-up tables, several steps used in the

spectral reconstruction and colorimetric transformations appear to fall within the standard.

Matrices larger than (3x3), however, are currently missing from the specification. A

detailed investigation of ICC-compatible implementations and arithmetic precision,

however, remains to be done, as does the cascading of several image transformations to

and from color-exchange spaces.
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X. APPENDICES

Appendix A: ∆Eab
*  for PCA spectral reconstruction errors for Munsell 37

data set

Table A-1: PCA reconstruction errors for the Munsell-37 set, where p is the number of

components used. Columns 5-8 are ∆Eab
*  values following reconstruction using 6 and 8

principle components based on the variance (cols. 5, 6), and second moment about the zero
vector (cols. 7, 8). CIE illuminant A and the 2û was used for the calculation.

sample  CIELAB coordinates ∆E*ab
L* a* b* Cov. about mean Cov. about zero vector

p = 6 p = 8 p = 6 p =8

N1.5 14.7 0.0 -0.2 0.7 0.6 0.6 0.1
N3.5 35.7 0.0 0.3 0.8 0.1 0.8 0.1
N4.5 46.4 -0.1 0.3 0.9 0.0 0.8 0.1
N5.5 57.0 -0.1 0.4 1.0 0.0 0.9 0.1
N7.0 72.5 -0.3 0.4 0.8 0.0 0.8 0.1
N8.5 87.0 -0.1 0.5 0.2 0.1 0.2 0.2
N9.5 96.4 -0.1 1.3 0.5 0.1 0.5 0.2
5G6/10 58.8 -46.9 8.0 1.5 0.1 1.5 0.2
5G8/6 78.8 -28.8 7.8 0.8 0.0 0.8 0.1
5G3/6 28.9 -26.6 4.5 0.6 0.3 0.6 0.0
5BG5/10 47.7 -49.8 -17.7 0.1 0.3 0.1 0.3
5BG8/4 80.6 -21.1 -5.7 0.1 0.1 0.1 0.1
5BG3/6 27.8 -29.5 -11.8 0.2 0.2 0.2 0.1
5B5/10 47.9 -43.4 -39.5 1.1 0.2 1.1 0.4
5B8/4 79.8 -17.3 -14.9 0.2 0.0 0.2 0.1
5B3/6 28.1 -28.2 -27.3 0.1 0.1 0.2 0.4
5PB5/12 48.7 -17.5 -49.0 1.2 0.4 1.2 0.5
5PB2/8 17.5 -14.8 -39.8 1.0 0.3 1.1 0.7
5PB8/6 81.9 -6.9 -17.3 0.8 0.1 0.8 0.1
5P5/10 53.8 20.3 -26.6 0.9 0.0 0.9 0.1
5P8/4 82.9 6.2 -9.4 0.1 0.1 0.1 0.2
5P2/8 19.3 21.0 -22.0 2.9 0.3 2.9 0.5
5RP5/12 57.3 46.7 4.9 1.3 0.2 1.3 0.3
5RP2/8 22.5 32.4 -3.8 2.7 0.3 2.8 0.3
5RP8/4 84.3 14.0 2.3 0.6 0.1 0.6 0.1
5R4/14 48.8 58.6 45.2 2.0 0.4 1.9 0.6
5R8/6 84.8 24.5 19.4 0.6 0.0 0.6 0.1
5R2/6 23.6 26.3 14.1 1.4 0.3 1.2 0.4
5YR6/14 67.6 39.3 89.0 8.3 0.1 8.4 0.4
(continued on next page)
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5YR8/6 85.1 20.6 35.8 0.3 0.1 0.3 0.1
5YR3/6 33.1 20.6 35.6 0.4 0.7 0.6 0.2
5Y9/6 93.0 6.5 46.2 0.2 0.3 0.2 0.3
5Y4/6 42.3 7.1 44.9 1.1 0.6 1.2 0.1
5Y8/14 84.8 11.3 99.9 4.6 0.2 4.6 0.1
5GY7/12 70.7 -17.4 78.5 2.1 0.1 2.2 0.5
5GY8/4 82.0 -5.1 26.9 0.5 0.3 0.5 0.3
5GY3/6 30.3 -11.2 32.4 0.4 0.8 0.6 0.2

mean 1.2 0.2 1.2 0.2
max. 8.3 0.8 8.4 0.7
RMS 1.5 0.2 1.5 0.2
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APPENDIX B: CIELAB Color-difference results for simulated

Multispectral Camera Image Acquisition

Table B-1: Average CIELAB errors calculated from model Image Acquisition.

sample PCA MDST Spline simple complex

N1.5 0.2 0.1 0.1 3.5 4.0

N3.5 0.3 0.2 0.1 0.7 0.4

N4.5 0.3 0.3 0.2 1.1 1.3

N5.5 0.4 0.3 0.2 1.4 1.6

N7.0 0.3 0.5 0.4 1.3 0.9

N8.5 0.1 0.9 0.8 1.5 0.9

N9.5 0.1 1.3 1.1 2.6 1.5

5G6/10 1.1 14.4 18.3 2.8 0.2

5G8/6 0.5 8.7 11.2 1.3 0.8

5G3/6 0.5 7.9 10.1 4.1 1.0

5BG5/10 0.1 13.4 15.6 4.7 0.4

5BG8/4 0.1 5.3 6.3 1.0 1.1

5BG3/6 0.3 7.3 8.5 4.0 1.2

5B5/10 1.1 8.0 7.8 4.5 1.0

5B8/4 0.1 3.8 3.9 0.6 0.6

5B3/6 0.3 5.1 4.8 3.8 0.5

5PB5/12 0.8 3.5 5.9 8.5 0.3

5PB2/8 1.1 4.0 6.2 10.6 0.7

5PB8/6 0.4 1.7 1.7 1.9 0.2

5P5/10 0.6 7.0 10.8 2.7 0.1

5P8/4 0.1 2.8 3.8 2.4 0.3

5P2/8 2.7 6.4 10.4 2.5 0.0

5RP5/12 0.6 14.0 16.5 1.6 0.1

5RP2/8 1.4 6.3 10.7 2.9 0.1

5RP8/4 0.3 4.6 5.0 1.2 0.6

5R4/14 0.9 15.4 17.7 3.2 0.1

5R8/6 0.4 8.0 7.7 1.2 0.5

5R2/6 1.2 8.2 8.7 4.6 0.4

5YR6/14 1.7 14.5 11.2 6.5 0.2

5YR8/6 0.6 6.0 4.8 1.5 1.2

5YR3/6 0.5 6.7 5.7 4.1 0.7

(continued)
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5Y9/6 0.1 1.1 2.9 3.0 0.6

5Y4/6 0.2 1.8 0.8 0.9 0.3

5Y8/14 1.6 3.0 5.1 5.6 0.1

5GY7/12 1.5 7.4 14.0 3.4 0.0

5GY8/4 0.2 3.6 5.3 2.8 1.0

5GY3/6 0.7 3.4 5.9 1.6 0.4

mean 0.6 5.6 6.8 3.0 0.7

rms 0.6 4.3 5.1 2.1 0.7

max. 2.7 15.4 18.3 10.6 4.0
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APPENDIX C: Moments of Functions of Random Variables

We are given functions of two random variables, f(x, y) and g(x, y), where the

corresponding means, variances, and covariance are µx, µy, σx
2, σx

2, σx y . In the following

expressions, we only retain up to the second-order moments of x and y, however the

approach is general and if necessary can be extended to higher-order terms in the series.

A. Mean

The expansion of f in a Taylor series about µx  and µy  (Ref. 31) is,

f(x,y) = f(µx, µy) + fx '(x-µx) + fx '(x-µx) + 1
2

 fx x
 '' (x-µx)2 + 2fxy

 '' (x-µx)(y-µy) +fyy
 '' (y-µy)2  + 

(C-1)

where

 fx ' = 
∂f(x,y)

∂x
 
µx, µy

 ,   fx y
 ''  = 

∂2f(x,y)
∂x∂y

 
µx, µy

 .

Taking expectations yields the mean value,

E f(x,y)  = f(µx, µy) + 1
2

 fx x
 '' σx

2 + 2fxy
 '' σxy +  fy y

 '' σy y
2  . (C-2)

The second term can be thought of as a bias.

B. Variance

The variance of f can be expressed as

σ f
2 = Ε f 2  - Ε f 2. (C-3)
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First we express f2 in terms of the series in Eq. (C-1),

 f2(x,y) =  f2(µx, µy) + fx '(x-µx)2+ fy '(y-µy)
2+ 2 f(µx, µy) fx

 '(x-µx) + fx '(x-µx) + 
fx x
 '' (x-µx)2

2
 

+  fxy
 '' (x-µx)(y-µy) + 

fy y
 '' (y-µy)2

2
 + 2 fx 'fy

 '(x-µx)(y-µy) 

Taking expectations,

E[f2(x,y)] = f  2(µx, µy) + fx '
2σx

2 + fy '
2σy

2 +                               
 

                                                      f(µx, µy) fx x
' ' σx

2 + fyy
 '' σy

2 + 2fxy
 '' σxy  + 2 fx 'fy

 'σx y

 . (C-4)

Substituting Eqs. (C-2) and (C-4) into (C-3),

σf
2 =  fx '

2σx
2+ fy '

2σy
2+ 2 fx 'fy

 'σx y
(C-5)

C. Covariance

The covariance of two functions of random variables, f(x, y) and g(x, y), can be

expressed as

σ fg = Ε fg  - Ε f  Ε g  . (C-6)

The two functions can be expanded as in Eq. (C-1), so
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E f  E g  = f(µ x, µy) g(µ x, µy) + 1
2

 f(µ x, µy) gxx
 '' σx

2 + 2gxy
 '' σ xy + gyy

  '' σxy
2

 
           1

2
 g(µ x, µy) fxx

 '' σx
2 + 2fxy

 '' σ xy + fyy
  '' σxy

2  .
(C-7)

Likewise, if we multiply the series expansions of f and g and take expectations 

E[fg] = f(µx, µy) g(µx, µy) +  1
2

 f(µx, µy) gx x
 '' σx

2 + 2gxy
 '' σxy + gyy

 '' σy
2  

 
+ 1

2
 gµx, µy) fx x

 '' σx
2 + 2fxy

 '' σxy +  fy y
 '' σy

2  
 

        +  fx 'gx
 'σx

2 + fx
 'gy

 ' + fy 'gx
 ' σxy + fy

 'gy
 'σy

2 .

(C-8)

Substituting Eqs. (C-7) and (C-8) into (C-6)

σfg =  fx 'gx
 'σx

2 + fx
 'gy

 ' + fy 'gx
 ' σxy + fy

 'gy
 'σy

2 . (C-9)

If we examine the results in Eqs. (C-5) and (C-9) they are found consistent with the use of

the matrix derivative operator

J = 
 
∂f
∂x

  
∂f
∂y

 

 
∂g
∂x

  
∂g
∂y

 
 ,

in the expression for the covariance matrix

Σ fg = J Σ x y  JT .
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APPENDIX D: Expected Value of ∆Eab
*

The expected value of ∆Eab
*  is

E ∆E ab
* = E ∆L*

2
 + ∆a*

2
 + ∆b*

2
(D-1)

where ∆L* = L* - µL*, etc. Since the first and second partial derivative of the function

∆Eab
* (L*, a*, b*) are undefined when evaluated at L* = a* = b* = 0, a key requirement of

error propagation based on Taylor series is violated. We can, however, approximate

equation (D-1) in two steps and compare the result with that for a simple univariate case.

We include up to the fourth moment.

First let 

p = L*2 + a*2 + b*2

where L*, a*, and b* now represent the zero-mean random variables, ∆L*, ∆a*, ∆b*, with

some covariance matrix, ΣL*a*b*. The expected value of p is

E p  = µp = σL*
2  + σa*

2  + σb*
2  . (D-2)

The variance is

σp
2 = E p2  - µp

2 . (D-3)

If we expand p2 and take expectations,

E p2  = E L*4  + E a*4  + E b*4  + 2  E L*2a*2  + E L*2b*2  + E a*2b*2  . (D-4)

The terms of Eq. (D-4) cannot be related to ΣL*a*b* without an assumption about the
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probability density function, P( L*, a*, b*). If we can approximate this by a joint normal

distribution, then

E L*4  = 3σL*
4  , 

 
E L*2a*2  = σL*

2  σa*
2  + 2 σL*a*

2 ,  
(D-5)

substituting Eqs. (D-5) and (D-4) into (D-3)

σp
2 = 2 σL*

4  + σa*
4  + σb*

4  + 4 σL*a*
2 + σL*b*

2 + σa*b*
2   . (D-6)

Next we form the transformed variable,

q = p .

Here we can expand the function in a series about the mean value of p, which is not zero.

Following this approach the expected value is given by

E q(p)   = E ∆Eab
*  ≈ σL*

2  +σa*
2  + σb*

2  - 
σp

2

8 σL*
2  +σa*

2  + σb*
2 3/2

 , (D-7)

where σp
2 is given by Eq. (A6).

Univariate normally-distributed errors

As stated above, Eq.(D-1) does not have continuous partial first derivatives when

µL* = µa* = µb* = 0. To compare our approximation, Eq. (D-7), with a known result,

consider the case of a normally-distributed error in only one variable, i.e., where

σa*
2  = σb*

2  = 0. Equation (D-7) becomes
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E ∆Eab
*  = 0.75 σL*

For this case, however, ∆Eab
*  is seen as merely the absolute value of ∆L *. The expected

value of Eq. (D-1) is the mean absolute deviation given, for a normal random variable

(Papoulis 1965), by 0.80σL*. So, for this univariate case, using Eq. (D-7) underestimates

the mean of ∆Eab
* . A less accurate, but more conservative approximation is given by the

first term of Eq. (D-7), resulting in E ∆Eab
*  = σL*.
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Appendix E: Model for CCD Imager Fixed-Pattern Noise

As discussed in Section 3 B, a simple model for CCD imager noise variance includes

both dark and shot noise. If the quantum sensitivity or gain, η, can be described as a

random variable about some mean value then the distribution of signal would become a

compound Poisson process because the mean parameter is varying from pixel-to-pixel. To

develop an expression for the detected signal variance in terms of fixed-pattern noise and

shot noise, this process was simulated.

It was first assumed that the fixed-pattern noise variation could be sufficiently described

as a normal random variable with mean and variance, µη and ση2, respectively. Two-

hundred samples were drawn from a population. This was done ten times, varying the

fixed-pattern noise parameter, f (ση/µη),  from 2% to 14% in 2% increments. For each of

these data sets, the following was done. Each of the 200 values was used as the mean value

for a Poisson number generator, which gave 200 deviates. The resulting 200 sets of 200

values were treated as a single population for calculation of a sample mean, µo, and

variance, σo
2.

The mean value of the secondary values was found to be equal to the mean value of the

primary samples. The variance was seen as well-fit by the equation

σo
2= µη + σi

2µη2 1 - f2 .

Figure E2 shows the result of the above simulation, for a mean input signal, varying from

100-1000 photons, for the extreme case of f = 25%.
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Fig. E-1: Results of the fixed-pattern noise simulation, as a function of mean signal, for

f  = 25%. Poisson indicates the level expected for f  = 0, sim. shows the simulation
results and model shows the levels predicted by model of Eq. (3.33).
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APPENDIX F: Measurement of the Kodak Digital Camera Spectral

Sensitivity

Measurement of the spectral sensitivity of the digital camera was accomplished using a

calibrated light source, part of the Model 740A-D Optical Radiation measurement system

from Optronic Laboratories, Inc. This system includes an automated double mono-

chromator with light source, capable of producing narrowband illumination over a range

280-900nm and triangular band widths of 1, 2.5, 5 and 10nm. A calibrated detector is used

in conjunction with the automated wavelength derive, which can sweep the monochromator

while measurements are made. The digital camera was to be used to capture several images

of the source exit slit, at 10nm intervals. The signal values of the various images of the slit

would be used to derive the measurement of camera spectral sensitivity.

A working distance of of 70 cm was chosen from the exit slit of the monochromator to

the front surface of the Nikon camera lens. This gave an image size of the slit in the

captured image of 25 x 45 pixels, which was centered. Next, the camera was replaced by

the calibrated detector, and the source spectral irradiance was measured over the range

[400-700 mn] in 10nm intervals. This is shown in Fig. C-1.

The camera was then remounted in the original position and several test exposures were

made with several of the interference filters in place. Due to the wide range in both source

irradiance and camera sensitivity over the wavelength range, it was necessary to

significantly vary the camera exposure over the course of the experiment. It was also

decided to fix the lens f/number at f/8, and set the camera to an ISO setting of 100, which

would yield the lowest noise images. The camera was focused on the exit slit of the

monochromator.

164



X. Appendices

400 450 500 550 600 650 700

Wavelength, nm

0.01

0.02

0.03

0.04

0.05

0.06

  Irrad.
Spectral

 

Fig. F-1: Measured spectral irradiance for the monochromator source used to measure the

spectral sensitivity of the DCS 200m digital camera, in units of j/m2/nm x 103. Each
symbol represents the source irradiance at the exit slit, of which a digital image was
captured.

The problem with varying the camera exposure time setting is that there is no guarantee

that the camera response in terms of digital value-exposure is a linear proportional scale. In

addition, the stated exposure interval may not be accurate, for example changing from

1/250 sec. to 1/125 sec. may not double the exposure time interval. To solve both of these

problems, the camera response to varying exposure needed to be established first. For a

single wavelength, 610nm, images were captured under the above conditions, with the

exposure time at each setting {1/200, 1/1000, 1/500, 1/125, ...2 sec}. This was repeated at

450nm. The mean digital value for the slit image was then easily fit to the equations

∆v = 5644 (∆t)0.663 (C-1)

and the inverse

∆t = 0.06003 (∆v)1.508, (C-2)
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where ∆v  and ∆t  are the digital value and corresponding nominal exposure time interval.

Note that the exponent in Eq.(C-2)  is consistent with a compensation for CRT

characteristic response with γ = 1.5. This relationship was used to define an effective

spectral sensitivity, separate from the nonlinear signal readout and signal processing,

characterized by Eqs. (C-1) and (C-2) and shown in Fig. 4-6.

  spectral
sensitivity

η(λ)

exposure digital
signal

Fig. F-2: Two stage model of digital camera spectral sensitivity and signal processing

Using this model and Eq. (C-2), it was simple to relate signal values corresponding to

varying exposure times. Each wavelength was addressed from 400nm increasing in order,

with the exposure time chosen so as to maximize the digital signal level without causing

signal clipping.The procedure used was:

1. For a given monochromator wavelength setting, the image was captured and the

average digital signal value calculated.

2. This value was then multiplied by the nominal exposure time in seconds.

3. This value was then corrected for the nonlinear step using Eq. (4-2) and recorded as an

effective response.

4. The ratio of this response divided by the previously measured source irradiance gives

the effective spectral sensitivity.

The validity of this procedure was tested by comparing the results of each setting, at a

 and the inverse in Eq. (C-1).
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wavelength when the exposure interval was changed. For example at 420nm a 1/30 sec

exposure was set, for a signal of 217.6. Since the exposure is increasing as wavelength

increases, exposing 430 at 1/30 sec would cause clipping. So prior to exposing 430 nm at

1/60, an additional exposure at 420nm was made at 1/60, so the above procedure could be

validated. Since the two spectral sensitivity estimates at 420nm were almost identical, the

procedure was taken as valid. This was done for each change of exposure setting.

It should be noted that this procedure yields an effective spectral sensitivity in tems

dv/j/m2/nm. It can only be compared with the expected detector absolute quantum

efficiency in shape, or as a normalized curve. This is done in Fig. 4-6.
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Appendix G: Camera Signals for Macbeth ColorChecker Image Capture,
and Photometric Correction Equations

Table: G-1: The average camera signal value for each of the color samples in the
ColorChecker target. The eighth record was acquired using a Schott infra-red filter.

Filter record number

Sample 1 2 3 4 5 6 7 8

Dark skin 33.53 29.30 43.35 54.55 73.76 60.71 65.47 66.82

Light skin 68.75 69.40 93.70 109.10 144.60 114.30 105.20 132.60

Blue sky 88.90 74.35 71.58 61.92 66.94 45.88 38.88 70.88

Foliage 26.25 27.35 51.78 49.61 52.78 38.27 44.01 53.16

Blue Flower 104.90 88.25 79.70 73.87 91.37 73.10 80.84 92.19

Bluish green 91.98 99.27 128.40 104.90 102.60 66.80 61.84 115.30

Orange 30.10 29.78 70.72 119.60 162.70 127.60 114.10 139.60

Purplish blue 95.81 79.73 55.18 46.39 54.14 43.93 43.91 56.81

Moderate red 52.55 44.70 50.29 82.23 132.00 111.60 97.40 109.20

Purple 60.90 40.30 31.72 37.19 54.40 52.75 69.87 50.66

Yellow green 35.26 51.00 121.70 120.40 125.50 84.23 76.23 127.80

Orange yellow 32.21 39.65 101.10 141.60 178.70 133.80 119.90 159.10

Blue 79.29 70.08 39.75 30.01 38.88 32.86 35.08 41.15

Green 32.31 41.88 86.54 74.70 64.33 40.45 36.73 74.80

Red 26.52 23.10 29.87 56.87 113.20 113.10 106.50 95.32

Yellow 28.13 46.46 129.40 152.60 180.80 133.20 113.40 168.70

Magenta 90.73 66.58 55.28 73.69 127.60 121.90 118.70 113.00

Cyan 87.35 93.00 85.58 54.27 52.77 38.96 38.15 68.09

White 156.00 148.80 180.00 185.40 212.80 159.40 137.80 211.10

Neutral 8 122.20 113.30 135.30 138.50 158.40 115.70 97.06 156.90

Neutral 6.5 88.18 80.81 95.66 98.53 113.40 82.71 70.33 111.20

Neutral 5 59.50 54.39 64.51 66.40 78.15 56.91 49.78 75.38

Neutral 3.5 36.73 32.31 40.26 42.96 50.63 39.10 36.50 47.30

Black 19.04 16.83 19.91 22.81 27.47 21.42 20.95 23.03
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Table: G-2: The average dark signal value for each of the color samples in the

ColorChecker target.. Columns 4, 5 and 8 have the same values becsuse the same camera

settings were used.

Filter record number

Sample 1 2 3 4 5 6 7 8

Dark skin 3.56 3.54 2.71 4.17 4.17 4.17 1.58 4.17

Light skin 3.43 3.46 2.61 4.02 4.02 4.02 1.50 4.02

Blue sky 3.49 3.47 2.51 4.00 4.00 4.00 1.48 4.00

Foliage 3.51 3.49 2.49 3.96 3.96 3.96 1.48 3.96

Blue Flower 3.55 3.54 2.53 4.02 4.02 4.02 1.42 4.02

Bluish green 3.43 3.41 2.41 3.88 3.88 3.88 1.39 3.88

Orange 2.98 2.95 2.35 3.75 3.75 3.75 1.31 3.75

Purplish blue 2.85 2.87 2.21 3.52 3.52 3.52 1.28 3.52

Moderate red 2.93 2.87 2.19 3.59 3.59 3.59 1.31 3.59

Purple 2.86 2.83 2.14 3.57 3.57 3.57 1.23 3.57

Yellow green 2.85 2.82 2.17 3.56 3.56 3.56 1.20 3.56

Orange yellow 2.84 2.84 2.12 3.49 3.49 3.49 1.13 3.49

Blue 2.34 2.32 1.96 3.36 3.36 3.36 1.13 3.36

Green 2.28 2.26 1.97 3.23 3.23 3.23 1.05 3.23

Red 2.33 2.30 1.94 3.21 3.21 3.21 1.04 3.21

Yellow 2.43 2.41 1.87 3.21 3.21 3.21 1.01 3.21

Magenta 2.36 2.35 1.87 3.15 3.15 3.15 1.03 3.15

Cyan 2.32 2.33 1.79 3.12 3.12 3.12 1.00 3.12

White 1.90 1.88 1.77 3.02 3.02 3.02 0.96 3.02

Neutral 8 1.87 1.87 1.68 2.84 2.84 2.84 0.93 2.84

Neutral 6.5 1.91 1.91 1.68 2.84 2.84 2.84 0.87 2.84

Neutral 5 1.93 1.93 1.62 2.81 2.81 2.81 0.82 2.81

Neutral 3.5 1.87 1.85 1.66 2.77 2.77 2.77 0.87 2.77

Black 1.85 1.82 1.62 2.73 2.73 2.73 0.86 2.73
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Table: G-3: The average white reference signal value for each of the color samples in the

ColorChecker target. The eighth record was acquired using a Schott infra-red filter.

Filter record number

Sample 1 2 3 4 5 6 7 8

Dark skin 186.8 173.1 209.6 206.1 245.7 185.2 164.9 243.4

Light skin 184.9 169.3 204.7 198.7 235.7 174.0 151.3 234.0

Blue sky 182.0 165.7 200.0 193.7 229.2 167.4 144.0 227.6

Foliage 179.9 163.9 197.3 192.1 227.7 165.7 143.1 225.6

Blue Flower 179.8 164.4 198.8 194.2 231.3 168.9 148.2 228.8

Bluish green 179.5 165.9 201.9 198.2 239.0 176.9 159.5 234.9

Orange 187.9 173.9 210.4 206.7 246.0 185.1 162.8 243.6

Purplish blue 186.6 170.9 205.9 200.3 236.8 174.6 150.5 234.7

Moderate red 186.8 169.9 204.2 197.5 232.8 170.2 148.0 231.0

Purple 187.0 169.8 203.0 196.4 233.4 171.0 156.7 230.8

Yellow green 187.5 171.1 205.3 199.6 236.9 172.6 149.5 234.3

Orange yellow 187.2 172.4 207.1 203.3 244.7 180.7 160.2 240.6

Blue 185.6 172.1 207.7 204.3 243.6 184.2 161.8 241.1

Green 183.6 168.5 202.3 198.4 234.7 173.6 149.2 232.4

Red 182.5 166.2 200.4 194.8 229.3 168.4 143.6 227.4

Yellow 182.0 165.5 198.7 193.0 227.3 166.5 143.4 225.4

Magenta 185.8 169.7 203.9 198.6 235.2 172.3 148.7 232.9

Cyan 186.2 171.5 205.7 202.0 242.9 180.2 159.2 239.5

White 179.7 167.0 201.1 199.5 238.8 182.5 161.0 235.8

Neutral 8 177.6 162.6 195.2 193.2 229.3 171.4 147.8 226.7

Neutral 6.5 174.4 159.7 192.6 188.7 223.5 165.4 141.0 221.3

Neutral 5 172.3 158.1 190.8 186.5 220.9 163.1 139.3 219.2

Neutral 3.5 173.1 158.7 191.7 188.3 225.0 166.1 143.3 222.3

Black 174.6 160.9 194.5 192.9 232.3 173.4 154.4 229.0
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Camera Photometric Corrections equations

s1 = -0.0353 + 0.576 v1 + 1.43 v1
2

 
s2 = -0.0295 + 0.566 v2 + 1.82 v2

2

 
s3 = -0.0242 + 0.417 v3 + 1.28 v3

2

 
s4 = -0.0252 + 0.432 v4 + 1.34 v4

2

 
s5 = -0.0272 + 0.357 v5 + 1.11 v5

2

 
s6 = -0.0244 + 0.389 v6 + 2.2 v6

2

 
s7 = -0.0207 + 0.251 v7 + 3.48 v7

2

 
s8 = -0.0238 + 0.371 y  + 1.22 v8

2

where {v} is the set of camera signals, and {s} the set of corrected signals.
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Appendix H: ∆Eab
*  for PCA and Direct Transformations.

Table H-1: Average colorimetric errors, ∆Eab
* , based on the processing of captured

ColorChecker pixel data by the PCA method, simple direct (Eq. 2-11) and complex direct
(Eq. 2-12) calculations. Transformations for columns 2-4 were based on model camera and
Munsell 37 data set. Column 5 is optimized for the camera signals. CIE illuminant D65 and
the 10û observer were used for the calculation, with each value based on a sample of 400
pixels.

Sample PCA simple complex PCAopt.

Dark skin 4.6 4.1 20.1 3.5

Light skin 4.5 7.0 9.8 4.4

Blue sky 3.8 10.2 9.8 3.0

Foliage 8.4 7.6 17.0 5.5

Blue Flower 3.4 5.0 12.1 3.5

Bluish green 3.7 3.1 3.2 4.7

Orange 11.0 7.1 15.3 3.9

Purplish blue 5.3 6.6 14.2 2.5

Moderate red 3.6 4.5 19.3 2.7

Purple 7.6 8.6 13.8 2.3

Yellow green 8.5 9.8 17.9 4.6

Orange yellow 9.2 10.9 14.3 6.8

Blue 1.0 16.1 12.7 6.1

Green 2.0 4.1 2.1 4.0

Red 8.2 11.2 36.3 4.1

Yellow 9.6 16.0 23.4 5.7

Magenta 6.1 8.5 15.3 4.2

Cyan 1.6 1.2 9.9 2.4

White 1.2 1.6 1.4 4.6

Neutral 8 1.7 2.1 2.0 4.3

Neutral 6.5 3.8 3.6 5.2 2.7

Neutral 5 1.9 3.4 6.0 2.1

Neutral 3.5 3.3 4.1 6.7 2.5

Black 7.3 5.1 12.5 6.8

average 5.1 6.7 12.5 4.0
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Appendix I: CIELAB image noise for PCA and Direct transformations.

Table I-1: RMS colorimetric errors and E[∆Eab
* ] based on the processing of captured

ColorChecker pixel data by the PCA method. Columns 1-4 are from transformations based

on the model camera and Munsell 37 data set. The fifth column used a transformation

matrix A optimized for the experimental camera signals. The CIE illuminant D65 and the

10û observer were used for the calculation, with each value based on a sample of 400

pixels.

Sample σL* σa* σb* E[∆Eab
* ] E[∆Eab

* ]opt.

Dark skin 0.6 2.8 3.3 4.4 3.3

Light skin 0.5 2.0 1.8 2.7 2.2

Blue sky 0.7 2.9 1.9 3.5 3.2

Foliage 0.8 4.0 3.9 5.6 3.9

Blue Flower 0.5 2.2 1.6 2.7 2.4

Bluish green 0.4 1.9 1.4 2.4 1.9

Orange 0.5 2.2 4.7 5.2 4.5

Purplish blue 0.5 2.1 1.4 2.6 2.6

Moderate red 0.6 2.8 3.0 4.2 3.7

Purple 0.9 4.2 2.3 4.9 4.3

Yellow green 0.4 1.9 3.1 3.7 2.8

Orange yellow 0.4 1.9 4.0 4.4 4.1

Blue 0.6 3.3 1.7 3.7 3.8

Green 0.5 2.5 2.8 3.8 3.2

Red 0.7 2.9 4.5 5.4 5.0

Yellow 0.4 1.9 4.1 4.5 4.1

Magenta 0.5 2.1 1.6 2.7 2.7

Cyan 0.4 2.1 1.3 2.5 2.3

White 0.4 1.8 1.4 2.3 1.9

Neutral 8 0.4 1.8 1.3 2.3 1.9

Neutral 6.5 0.5 2.1 1.7 2.7 2.4

Neutral 5 0.5 2.2 1.7 2.9 2.4

Neutral 3.5 0.7 3.3 2.8 4.4 4.0

Black 1.9 8.0 6.2 10.3 10.5

Average 0.6 2.7 2.7 3.9 3.5
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Table I-2: RMS colorimetric errors and E[∆Eab
* ] based on the processing of captured

ColorChecker pixel data by the two direct coloimetric transformations. Columns 1-4 aren
basedon the simple model of Eq. (2-10) and columns 5-8 aren based on the complex model
of Eq. (2-11). Both transformations are based on the model camera and Munsell 37 data
set. The CIE illuminant D65 and the 10û observer were used for the calculation, with each
value based on a sample of 400 pixels.

Simple-direct Complex-direct

Sample σL* σa* σb* E[∆Eab
* ] σL* σa* σb* E[∆Eab

* ]

Dark skin 1.9 3.0 3.5 5.0 10.0 16.0 4.1 19.0

Light skin 1.5 2.1 1.7 3.1 11.0 12.0 2.2 17.0

Blue sky 2.1 2.9 1.9 4.1 17.0 7.2 2.5 19.0

Foliage 2.5 3.6 3.7 5.7 13.0 23.0 7.7 27.0

Blue Flower 1.9 2.3 2.0 3.6 8.2 11.0 3.9 14.0

Bluish green 1.4 2.0 1.5 2.9 3.6 2.6 2.0 4.9

Orange 1.8 2.7 3.2 4.6 6.8 18.0 3.4 19.0

Purplish blue 1.7 2.4 2.0 3.6 8.0 4.6 2.6 9.5

Moderate red 1.8 3.0 2.8 4.5 12.0 17.0 3.9 21.0

Purple 2.7 3.6 2.8 5.3 22.0 27.0 7.4 36.0

Yellow green 1.7 2.5 3.4 4.6 11.0 12.0 4.2 17.0

Orange yellow 1.7 2.5 2.9 4.2 11.0 15.0 3.2 19.0

Blue 2.8 3.9 2.7 5.5 16.0 13.0 4.6 21.0

Green 2.1 2.8 3.3 4.8 8.2 5.3 3.8 10.0

Red 2.4 3.7 3.7 5.7 20.0 26.0 5.5 33.0

Yellow 1.6 2.3 3.3 4.3 21.0 17.0 4.2 27.0

Magenta 1.8 2.1 1.7 3.3 10.0 18.0 2.9 21.0

Cyan 1.9 2.3 1.9 3.6 8.8 10.0 2.3 14.0

White 1.5 2.0 1.8 3.1 5.2 4.0 1.4 6.7

Neutral 8 1.4 2.0 1.5 2.9 3.1 3.9 1.3 5.2

Neutral 6.5 1.7 2.0 1.9 3.3 3.9 3.7 1.6 5.6

Neutral 5 1.7 2.3 2.1 3.6 5.3 4.9 1.9 7.5

Neutral 3.5 2.6 3.3 4.2 5.9 15.0 6.2 3.6 16.0

Black 4.3 6.8 8.0 11.4 43.0 15.0 10.0 47.0

Average 2.0 2.8 2.8 4.5 12.2 12.2 3.8 18.2
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APPENDIX J: Camera RMS Noise for Macbeth ColorChecker Image
Capture

Table: J-1: The observed camera rms noise for each of the color samples in the
ColorChecker image files. The units are digital counts [0-255].

Filter record number

Sample 1 2 3 4 5 6 7 8

Dark skin 2.17 1.61 1.75 1.34 1.52 1.86 2.33 1.96

Light skin 1.64 1.45 1.70 1.55 1.81 1.93 1.90 1.76

Blue sky 1.93 1.96 2.18 1.74 2.02 1.92 1.91 1.83

Foliage 1.88 1.69 2.13 1.86 1.67 1.57 1.89 1.64

Blue Flower 2.22 1.81 1.61 1.94 2.27 1.63 1.91 2.23

Bluish green 1.79 1.84 2.21 1.62 1.61 2.08 2.20 1.82

Orange 1.86 1.59 1.92 1.47 1.86 2.21 2.85 1.74

Purplish blue 1.92 1.64 1.28 1.34 1.33 1.63 1.77 1.49

Moderate red 2.18 1.65 2.00 1.44 1.51 1.84 2.07 1.57

Purple 1.60 1.73 2.00 2.35 1.58 2.09 4.62 1.86

Yellow green 2.78 1.93 1.49 1.49 1.77 1.35 1.75 1.70

Orange yellow 1.93 1.85 1.85 1.30 1.62 1.70 2.02 1.50

Blue 2.05 1.59 1.45 1.65 1.40 2.58 2.34 1.63

Green 1.97 1.69 1.48 1.72 1.86 1.45 1.83 1.42

Red 2.03 2.32 1.70 1.46 1.80 1.87 1.50 1.55

Yellow 1.83 1.51 2.32 2.26 2.43 2.05 2.16 2.57

Magenta 1.63 1.55 1.30 1.87 1.80 1.68 1.88 1.90

Cyan 1.79 1.57 1.49 1.52 1.82 1.67 2.07 1.82

White 2.74 1.92 2.37 2.39 2.32 2.29 2.93 2.24

Neutral 8 1.85 1.61 1.69 1.64 1.72 1.67 2.05 1.90

Neutral 6.5 1.85 1.74 1.82 1.88 1.93 1.57 1.78 2.05

Neutral 5 1.70 1.62 1.41 1.45 1.46 1.58 2.08 1.61

Neutral 3.5 2.70 1.76 1.48 1.75 1.95 1.73 2.36 2.10

Black 2.68 2.23 2.53 2.00 1.96 1.90 1.98 2.11
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Table: J-2: The observed camera rms dark for each for the image locations and camera

settings used for the ColorChecker target capture. The units are digital counts [0-255].

Records 5, 6 and 8 have the settings as number 4.

Filter record number

Sample 1 2 3 4 5 6 7 8

Dark skin 3.77 3.77 3.56 3.84 3.84 3.84 2.99 3.84

Light skin 3.76 3.78 3.54 3.83 3.83 3.83 2.93 3.83

Blue sky 3.75 3.75 3.5 3.81 3.81 3.81 2.92 3.81

Foliage 3.76 3.74 3.48 3.81 3.81 3.81 2.92 3.81

Blue Flower 3.78 3.78 3.51 3.82 3.82 3.82 2.88 3.82

Bluish green 3.75 3.74 3.45 3.8 3.8 3.8 2.85 3.8

Orange 3.66 3.65 3.43 3.79 3.79 3.79 2.78 3.79

Purplish blue 3.61 3.61 3.37 3.77 3.77 3.77 2.76 3.77

Moderate red 3.65 3.64 3.35 3.8 3.8 3.8 2.79 3.8

Purple 3.61 3.61 3.33 3.78 3.78 3.78 2.71 3.78

Yellow green 3.66 3.65 3.37 3.79 3.79 3.79 2.73 3.79

Orange yellow 3.63 3.64 3.33 3.74 3.74 3.74 2.63 3.74

Blue 3.44 3.42 3.24 3.74 3.74 3.74 2.62 3.74

Green 3.41 3.4 3.24 3.71 3.71 3.71 2.56 3.71

Red 3.45 3.45 3.24 3.73 3.73 3.73 2.55 3.73

Yellow 3.47 3.46 3.18 3.69 3.69 3.69 2.49 3.69

Magenta 3.49 3.46 3.23 3.7 3.7 3.7 2.55 3.7

Cyan 3.42 3.42 3.14 3.66 3.66 3.66 2.48 3.66

White 3.2 3.2 3.13 3.66 3.66 3.66 2.45 3.66

Neutral 8 3.2 3.21 3.07 3.62 3.62 3.62 2.41 3.62

Neutral 6.5 3.22 3.22 3.07 3.61 3.61 3.61 2.34 3.61

Neutral 5 3.23 3.24 3.02 3.6 3.6 3.6 2.28 3.6

Neutral 3.5 3.19 3.19 3.05 3.57 3.57 3.57 2.33 3.57

Black 3.18 3.16 3.02 3.56 3.56 3.56 2.32 3.56
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APPENDIX K: CIELAB Color-Differences Due To Multispectral Camera
Signal Quantization

Table K-1: CIELAB color-differences due to uniform camera signal quantization, and
modified PCA spectral reconstruction. Signals (1, 2, 3, 7, 8) were used, with 12-bit (4096
-level) signal encoding, eight basis vectors, CIE D65 illuminant and 10° observer.
Rounding error is between the actual color-locus and the nearest discrete level.

ColorChecker quantized coordinates rounding, interval, ∆Eab
*

Sample Lab
* a* b* error∆Eab

* mean median max.

Dark skin 36.80 12.70 12.74 0.05 0.13 0.12 0.24

Light skin 66.02 12.57 15.93 0.02 0.05 0.05 0.10

Blue sky 52.34 -2.97 -22.10 0.02 0.08 0.07 0.16

Foliage 42.60 -14.41 22.09 0.06 0.13 0.12 0.25

Blue flower 57.59 6.15 -25.67 0.04 0.06 0.06 0.13

Bluish green 72.92 -31.24 2.43 0.02 0.05 0.05 0.11

Orange 58.94 32.73 52.94 0.03 0.08 0.07 0.15

Purplish blue 42.97 7.38 -40.72 0.07 0.10 0.09 0.20

Moderate red 51.64 41.79 12.62 0.03 0.07 0.07 0.12

Purple 30.63 21.20 -25.21 0.07 0.14 0.14 0.27

Yellow green 72.07 -21.44 58.66 0.02 0.06 0.06 0.12

Orange yellow 70.27 18.98 64.32 0.03 0.06 0.06 0.12

Blue 32.62 9.66 -47.10 0.09 0.14 0.13 0.28

Green 55.60 -35.19 36.22 0.06 0.10 0.09 0.19

Red 40.42 49.26 26.03 0.08 0.11 0.10 0.21

Yellow 80.01 3.42 78.84 0.03 0.06 0.06 0.11

Magenta 51.61 42.53 -16.62 0.02 0.07 0.06 0.12

Cyan 53.34 -30.52 -22.99 0.02 0.09 0.08 0.20

White 96.36 -1.21 2.65 0.00 0.03 0.03 0.06

Neutral 8 81.41 -0.39 -0.26 0.01 0.04 0.04 0.08

Neutral 6.5 66.49 0.10 -0.08 0.02 0.05 0.05 0.11

Neutral 5 50.90 0.26 -0.39 0.01 0.08 0.08 0.16

Neutral 3.5 33.94 -0.15 -0.34 0.11 0.15 0.14 0.30

Black 19.09 0.12 -0.97 0.08 0.30 0.28 0.60

Average 0.09 0.09 0.18
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APPENDIX L: Camera Image Noise as Projected into CIELAB

Table L-1: Stochastic errors in CIELAB due to detector noise, following the dark- and

shot-noise model. The imager dynamic range (max. signal/σdark) of 1200 and maximum

signal charge of 60,000 electrons, calculated for the ColorChecker samples. The CIELAB

transformation, following spectral reconstruction using five (1, 2, 3, 7, 8) camera signals,

is for CIE illuminant D65, and 10° observer. The seventh column is the mean color-

difference.

Sample µL* µa* µb* σL* σa* σb* E[∆Eab
* ]

Dark skin 36.80 12.66 12.72 0.22 1.01 0.56 1.03

Light skin 66.02 12.58 15.94 0.15 0.74 0.38 0.74

Blue sky 52.34 -2.95 -22.11 0.17 0.91 0.38 0.85

Foliage 42.60 -14.36 22.11 0.19 1.14 0.54 1.10

Blue flower 57.59 6.11 -25.67 0.16 0.83 0.36 0.79

Bluish green 72.92 -31.26 2.42 0.14 0.88 0.34 0.80

Orange 58.95 32.74 52.97 0.17 0.67 0.53 0.80

Purplish blue 42.98 7.32 -40.70 0.19 0.96 0.40 0.90

Moderate red 51.65 41.78 12.64 0.18 0.66 0.44 0.73

Purple 30.62 21.27 -25.23 0.25 1.07 0.52 1.06

Yellow green 72.08 -21.45 58.64 0.14 0.84 0.46 0.86

Orange yellow 70.27 19.01 64.32 0.15 0.68 0.49 0.78

Blue 32.63 9.75 -47.10 0.22 1.12 0.46 1.04

Green 55.60 -35.24 36.23 0.16 1.08 0.49 1.02

Red 40.43 49.23 26.11 0.23 0.68 0.60 0.86

Yellow 80.01 3.40 78.82 0.14 0.70 0.49 0.79

Magenta 51.61 42.55 -16.63 0.19 0.68 0.40 0.72

Cyan 53.35 -30.50 -22.98 0.16 1.08 0.38 0.95

White 96.36 -1.21 2.65 0.12 0.66 0.30 0.63

Neutral 8 81.41 -0.37 -0.26 0.13 0.71 0.32 0.68

Neutral 6.5 66.49 0.09 -0.09 0.15 0.79 0.36 0.75

Neutral 5 50.91 0.26 -0.39 0.17 0.91 0.41 0.87

Neutral 3.5 33.94 -0.04 -0.37 0.22 1.18 0.54 1.12

Black 19.11 0.10 -0.89 0.34 1.80 0.82 1.71

Average 0.18 0.91 0.46 0.90
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