E

Multi-spectral-based color reproduction research at the
Munsell Color Science Laboratory

Roy S. Berns, Francisco H. Imai, Peter D. Burns, and Di-Y. Tzeng

Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science, RIT
54 Lomb Memorial Drive, Rochester, NY 14623-5604 USA

ABSTRACT

The traditionaltechniques ofmage capture, scanning, proofingnd separating daot takeadvantage ofcolorimetry and
spectrophotometry. For critical color-matching applications such as catalog sales, art-book reprodndtioosputer-aided
design, typical images, although pleasing, are unacceptableesjibct tocolor accuracy.The limitations thatead tothese

errors have awell-definedtheoretical basisind are aresult of currenthardware andsoftware. This haded us to a re-
examination of the traditional graphieproduction paradigm. Aesearch andlevelopment prograrhas begun thatvill
alleviate the theoretical limitations associated with traditional techniques. There are four main phases: 1) Multi-spgetral ima
capture, 2)Spectral-basedeparationand printing algorithm development, 3) Implementation on press 4) Systems
integration withdata andmage archives. Thipaper describethis new paradigm, summarizeecent researchesults, and
considers implementation opportunities.

Keywords: colorimetry, spectrophotometry, multi-spectral image, multi-ink separation, metamerism, high-spatial
resolution, color quality, graphic reproduction, spectral-based printing, principal-component analysis.

1. LIMITATIONS OF CONVENTIONAL GRAPHIC REPRODUCTION

Conventional graphic reproduction involves the concatenatiawmfreproduction processeshotographyand printing. The
photographic process, as an input device, is inherently noncolorimetric. It is impraciéchlidee spectradensitivities with

the required large spectral overlap because photographic products consist of a "tripak” where the three layers are stacked one
top of anothet.Furthermore, the photometric responses of fil@nonlinear? As a consequence, largelor distortions can

result during the image recording process. The variance in match eqluaitpthe metamerisnean belarge, resulting in a
dramatic reduction in colaguality. Thiscan beeasily demonstrated bynaking a photographieproduction of a metameric

pair (a pair of specimens that match to a color-nowhakrverbut have different spectral properties as a result wing

different colorants during their manufacture).

The secondstage in conventional graphieproduction isscanningandimage editing. The editingan correct the
inherentlimitations in color photography to some extent. Although scanning often resu#tdditional color distortions,
many methods have been published fwroducehighly accuratescanning of photographic media. It @ssible to use a
conventionalscanner as a&olorimetric device. Thus, the colorimetriccoordinates ofthe photographic materiatan be
determinedaccurately Color editing has alsbeenused tominimize the color distortions resulting from tipdotographic
process.

Conventionalfour-color printing results in aeproduction composed afyan, magenta, yellowand black inks.
Optimally, the ink amounts, expressed as effective dot areas on the page, should be determined that result in the same color
the soft proof. Thus, the color print can be related back to the original object or scenepmdigcedvhen all the steps are
concatenated. Becausiee original object is likelycolored with different colorants than the four printing primaries, the
reproduction results in a metameric match.

In summary, it is impossible taccuratelyreproduceoriginal objects using the conventiongchniques of
photography and process printing.
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2. ANEW PARADIGM: MULTI-SPECTRAL COLOR REPRODUCTION

It is well known that the only way tassure a color match faitl observers across changesillamination is toachieve a
spectral match. Developing a spectral-based color reproduction system requires twesahigatems. The first is spectral
analysis system. Thepectral properties afachimage element must be known. Thecond isthe ability to print using
multiple inks. If the printer has a large set of inks from which to choose from, it should be possible to select a siktsset of in
that achieve a spectrahatch to criticalsceneelements.There aretremendouspossibilities inachieving spectral matches
between original objects and their printed reproductidhgeesubsystemsare requiredmulti-spectral image estimation, ink
selection minimizing metamerisnand spectral-basegrinting models including separaticalgorithms. This is shown in
Figure 1. Inaddition tothese subsystemsiichromatic-basednultimedia imagingdevicesincluding CRT displays and
desktop printercan beeasily incorporated.Essentially, trichromatic-basedsystemsare asubset ofmulti-channel-based

systems.
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Figure 1. Multi-spectral-based multimedia flowchart. (Van Gogh image copyright of National Gallery, London.)

There is an obvious parallel to the world of color matching of materials. Ibrled States, many stores that sell

house painhave colomatching systemsTheseconsist of a spectrophotometer, computerd paint-dispensingystem.

Most manufacturers includingextiles, plasticsandcoatings use similar systems. sfandard’sspectralreflectance factor is
measured using the spectrophotometer. From a data base of colorants appropriate to the particular coloration process, a subs
is selected that when used to color the particular material system (e.g. p@ibti@)y a matctwill result that is minimally
metameric. The software algorithms used in these systems can be divided into two steps. The first is colorantFselection.

a largedatabase otolorants, thethree or four colorantombination (the most common number of coloramed in a
formulation) isselectedhat results in the closespectral matclfi.e. leastmetameric). Onc¢he colorantsare determined,

their amounts, the recipe, is definealsed on @olor mixing modelsuch as Kubelka-Munk turbichediatheory. If anexact



spectral matchwill result, onecancombine these steps. For examgtaward-selectionmultiple-linear regressidncan be
used to order the candidate colorants in terms of their spectral mapaitargtial. However, if an exact spectralatch is not
possible,therewill be residualcolorimetric error; accordinglhthe spectral matching algorithmight be usedfor colorant
selectionfollowed by a colorimetrianatching algorithm to insure a close match for a primbmyninant. Alternatively,
iterative methods are used where every three- or four-colorant combination is evaluated.

The multi-spectral image capture is equivalent to the spectrophotometer. Acsgidiofatenks is equivalent to the
database oéppropriatecolorants. The ink-selection algorithm égjuivalent to coloranselection minimizing metamerism.
The spectral-printing model and separation algorithm is equivalent to determining the final color recipe.

3. MULTI-SPECTRAL IMAGE CAPTURE

Conventional image capture, botiemicaland digital, is largely trichromaticThree channelsre used torecord color
information. Traditional colorscience would argughat therequirements forbuilding input devices are straightforward.
Trichromatic systems shouldave spectratesponsivities thagre linearly transformable from color matching functions
(sometimes called the Luther condition). For a wide-band system, it is impossible to distivegfuisen metameristimuli.
Two approaches can be taken to estimate the spectral properties of scene elements.

The first, and most direct, method is to increase the sampling increment above three. Conceptuakyguikeiaat
to using aspectrophotometer sampling the visible spectrum at conbtaripassand wavelength intervatatherthan a
colorimeter or densitometer. Although spectrophotometeuracyrequirements haveot been universalldefined, according
to the CIES tristimulus errors will not be introduced when measuring materials if a 5 nm wavelength incaschdaindpass
are used. Ideally, one would wantsampleevery 5 nmwith a 5 nm triangulabandpasshroughout the visible spectrum.
This corresponds to 61 channels. Obviously, it is necessary to reduce the number of channels. However, one should be able t
decrease the sampling increment without a significant loss of spectral information, because of the abisaratinistics of
both man-made and natural colorants. Spectral analysis of colored stimuli using linear medbfirgegypically result in
less than ten eigenvectdisThus one should be able to greatly reduce the number of channels from 61.

The second method is to performapriori spectral principal-component analysis (PCA) enabling either the optimal
filter desigri®!2 or a moreaccuratespectral reconstruction of the subsampdtighulus. Thismethod isusedroutinely in
photography in the conversidietweenintegralandanalytical densityBecause ajiven photographic material uses a single
set of cyan, magenta, and yellow dyes, three eigenvectors based on the absorption spectra will define the entierapectral
Thus, a three-channel measurement with a logarithmic response (necessary due the linear nature of the absorption spectra, n
the reflectance or transmittance spectra) can be used to estimate the spectral properties of photographic inegfesquenis
has beersed tobuild high-accuracydeviceprofiles for graphic arts scannér€onsiderableesearcthas beerperformed in
determining the minimum number of channéf8 their spectral responsandhow the multichannel information igsed for
spectralestimation. Issuesclude colorimetricaccuracy, spectral accura@ndnoise propagation. For examplesearch at
the Munsell ColorScience Laboratoty*’ hasfocused onusing a typical monochrome digitahmera (KodakProfessional
DCS 200m) in conjunction with a set of sewveadily-availablefilters from Melles Griot. Thespectralsensitivities of the
seven channels are shown in Figure 2.

The method of spectral estimation wassed on aeigenvectormnalysis of a subset of the Munsell Book of Color
sampling this system’s color gamut. The first five eigenvect@r® used. The spectral reconstruction for a given sample is
computed by

f=da +u, (@)
where,® =[e1,e,,...€5], Us is the mean spectral vectanda T =[a,, ay,...as] is the set of fivescalarweights associated
with the sample to be reconstructed spectrally. The scalars can be found by

a=[oTo[MoT(f-p). (@
The tern{ q:Tqﬂ‘quT can be interpreted as a matrix of spectral sensitivity functions that could be used to analyze & sample,
for subsequent spectral reconstructibar the multi-spectratamera, howevethe spectral reconstructioreeds to béased
on thecamerasignals,s. This can beachieved bycomputing aleast-square (5 x 7hnatrix, M, to transform thecamera
signals into estimates of the scalar coefficigits The spectral reconstruction is then given by,



f=d M s (3)
wheres’ =[s;,s,,...,5]. Equation (3)doesnot includethe mean vectonys, since the principal componentsed inthis
reconstruction were calculated as the eigenvectors afettendmoments about zeroatherthan the usuatovariancematrix
about the mean.
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Figure 2. The spectral sensitivity of each of the seven filter/sensor channels.

Since each ofthe optical filter spectral transmittanceirveshas a similar shape, orean think of the image
collection, prior to detection, as a spectral filtering followed by a sampling operatiod\with0 nm?® This view ofimage
acquisition lendstself to spectral reconstruction via interpolation schemes such as cubic-aplin@odified-discrete-sine-
transformation (MDST) interpolatioid?* The latter method relies on properties of the sine-transfanaiFourier-transform)
representations of signal. Simple extrapolation iapplied tothe sine transform of an inpwrray, followed by inverse
transformation. Arinterpolatedsignal canthen beextractedfrom the resultingdata. Theséwo interpolation methodsvere
also evaluatedFigure 3 shows thadpectralestimation results itarge differences onspectral-reconstruction accuracy. The
poor results for the two interpolation techniques were expected given the spectral width of the seven channels which limits the
high-spectral frequency components in the detected signal.
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Figure 3. The spectral reconstruction using principal-component analysis (P@adified-discrete-sine-transformation
(MDST) and cubic spline interpolation, from camera signal values, for the cyan sample of the Macbeth ColorChetker chart.



In the above method, the visible spectrum was evenly sampled. It may be possible to impemeairtey of the
spectral reconstruction by uneverdgmpling inorder tooptimize for adefinedclass of materials. For examplesearch
performed at the Munsell Color Science Laborafdound that different colorant systemequireddifferent spectralsampling
for optimal results as shown in Figure 4 comparing an embodiment of the Munsell Book of Color (Cloemas5000)
and the Macbeth ColorChecker chart.
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Figure 4. Optimal seven-channel spectral relative responsivities for highest colorimetric accuracy
for the Chroma Cosmos 5000 (top) and a Macbeth ColorChecker (bdttom).

Multi-spectral image capture has been used by England’s National Gallery to accurately record the colorimetric values
(CIELAB) of paintings for archivahnd conservatiorpurposes’?® Because ofhe inherent low resolution of digitemeras
and the large size of marmaintings, theyscan across thgainting anduse mosaic-typsoftware to fuséhe variousmage
subspacegfter appropriate signal and spatial processing, 20K x 20K 10-bit L*, 11-bit a* aeddodedmages result. The
National Gallery has been very successful in developing colorimetric image arahiugsing them tgprovide the European
community with accurate coloeproductions irboth soft-copyand hard-copyorms under adefinedset of illuminating and
viewing conditions (i.e. colorimetric color reproduction).

We have an interest imlrawing upon the European experienceand making two enhancements. The first is
alleviating theneed toscan across thpainting. This will greatly reducethe costandcomplexity of the imageacquisition
system. The second is to define images spectrally and use the spectral informptiovidethe Americancommunity with
printed color reproductions that are close spectral matches to the original objects.

An imaging system ignvisionedconsisting of a high-resolution photographic systam alow-resolution multi-
spectral digitaksystem. In this systemgachpixel of eachmulti-spectral image isnterpolated toproduce ahigh-spatial



resolution image keeping its color informatiand changing the original lightness for the lightnetata of corresponding
high-spatial resolution image subpixels, without noticing ¢lxpecteddecrease otonal resolution in thénybrid image,
because the modulation of the light in the eye becomes progressively smaller as thdrepatiatyincreases’ This visual
feature ofhumaneye has beerapplied in photography, in television, as well as tevise very effectivecompression
algorithms such as JPEG. The lightness and color informaginrbecodified respectively as CIELAB L*and CIELAB a*,
b* in order to allow the system to be easily optimized to have the least color difference in CHEAB Figure 5 shows a

schematic diagram of this proposed method.
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Figure 5. Diagram of proposed image fusion.

At first, L* is calculatedfor eachpixel of the high spatial resolution image. TGH{ELAB a* b* values foreach
pixel of the multi-spectral image is computed from the camera signats to m andn is the number of filters, by @on-
linear transformation. The images are fused keepingf the high spatial resolution imagedcombining with thea*, b*



valuesof the low spatial resolution image. The tristimulus valuesawhpixel of the hybrid image iscalculatedand the
camerasignals ofeachchannelare calculated byinear combinationFinally the hybrid high-resolution spectral image is
reconstructed by principal-component analysis. We can divide the hybrid multi-spectral generation into three gpetsrahe
analysis, the image fusion, and the spectral reconstruction.

Spectral Analysis

Performance of aa priori spectral analysis of the sampled data is necessary to achiewewnatespectral reconstruction for
the specifiedsamplingrate andfilter systemcharacteristicsuch as type, shammdnumber. It is possible to optimize the
filters'®* but it is notconsidered irthis stage of theesearch becauseich optimized filtersare usually very difficult to be
manufactured. The number of basis functions necessary for accurate spectral reconstructeperadsoorihe databaseised
for PCA. However, 5 to 8 basis vectors seem to be sufficient for an accurate spectral reconstruction of artwork.

One can model multi-spectral image acquisition usirairix-vectornotation. Expressing theampledillumination
spectral power distribution as
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then the captured image is giventlsyDF)"Sr and the color vector can be representec=ag=(X, Y, 4" whereX, Y, Zare
the CIE tristimulus values. The CIELAB, a*, b* are given by the non-linear transformatnwhere&( X, Y, Z) =L*,
a*, b*.

Image Fusion

The color matrix of the hybrid image ¢s&=(X’' Y’ Z')T, whereX’, Y’, Z’ are the tristimulus values corresponding to the high
spatial resolution subpixél combinedwith the original multi-spectrah*, b* valuesandX’, Y’, Z' areobtained by non-
linear transformatio™. The digital count for each pixel of the hybrid image is givetibyATA) *A'c’.

Spectral Reconstruction of Hybrid Image

The reconstructegpectralreflectancefor sample i is giverby: r, = ®a,, where®=[e, e, ... €], where ¢ e, ... g are the

eigenvectors of the second moments about the zero vectar, arfd, a, ... a]'= ®r, arethe associatectigenvalues® is a
priori information obtained by principal-componeanalysis ofsampled spectrakeflectance andx; can be estimated as
follows: o =a =Bt' whereB=at’ "[t' t’ ']"* where the rows ofi correspond to the samples in the setefiectance vectors
for each set-illuminant combination.



4. SPECTRAL-BASED SEPARATION AND PRINTING ALGORITHM DEVELOPMENT

Reducing metameristbetweenobjectsandtheir printed reproductionsnplies spectralmatching. The color of the output
device is defined byts spectralreflectance factor rathé¢han colorimetriccoordinates. In spectral-based research, it is more
common todevelopmodels rathethan build mxn dimensional look-up tablewhere m counts the number aheasured
samplesand n counts the number of wavelengths. The first stemlémeloping a spectral-basgdinting system is the
derivation of an accurate spectral model of color printing. There are many representative color printing$-thodels.

As an example lin@nd Berns** usedthe Yule-Nielsermodified Neugebauegquations to model procepsinting,
shown in Eq. (7) whera are theeffective dotareas othe 16 Neugebaueprimaries for four-coloprinting, described in the
usual manner by the Demichel equatidRsre the reflectance factors of edthNeugebauer primarg, m, y andk, are dot
areas of each primary ink, ands the Yule-Nielsen n value defined as a function of wavelength. Typical speculalfits
are shown in Figure 6.
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Figure 6. Measured spectral reflectance factor (dashed line) and predicted spectral
reflectance factor (solid line) of the magenta ramp based on Eq. (7).

One difficulty often encountered imsing theDemichel equations tpredictthe entire color gamut is discrepancy
between predicted and act@giba coverage caused bptical interactions. Recognizing that tiele-Nielsen modification is
empirical, this can be removed in favor of increasing the number of Neugebauer primaries. This approach is more in line with
the true optics of inkpaperinteractions. The number of primariean beincreased toi> wherei counts the number of
primaries or to infinity’®“° Alternatively, the empirical equation is used with an augmentattmrethe optical interactions
are accounted for in the conversion between theoretical and actual area cotéégies. and Bernslescribedhis using Eq.
(8). Their colorimetric performance was, on averdge*,, of 2.2 with a maximum of %or independentolors sampling a
printer color gamut represented by Matchprint I11.



qc = fc_m(dt,m) fc_y(dt,y) fc_k(dt,k)
qm = fm_c (dt,c) fm_y(dt,y) fm_k(dt,k)
y = fy_c (dt,c) fy_m(dt,m) fyik(dt,k)
k = fk_c (dt,c) fk_m(dt,m) fk_y (dt,y)

(®)

Whereqi is coefficientq for the overlappednk i, the functionf; _j(dt,j) is the decreasing effectivelot gain function of the
secondary color (overlapped inky overlapping ink), andd,; is the theoretical dot area of each overlapping primary color.

In order to fully develop a multimedia system that is analogous to the color matching of paints or tebatitgs, a
database of inks is required. The purpose of the database is to provide sufficient spectral variability, suctathétoreg a
spectral reflectance factor, thereby matching the spectral properties of an object regloringproductionThis requirement
is differentfrom typical multi-ink systems|argely concernedwith increasing colomgamut?-** Publishedresearchwhere
minimizing metamerism is the goal rather than increasing color gamut has been limited to preliminary research by one of the
authors?

Using a small-aperture spectrophotometer, the spectral reflectance factor of 100 positions landsss@painting
was measuredplotted in Figure 7. Transforming the spectlata toabsorptionandscattering ratios usinglubelka-Munk
turbid mediatheory, performing principal-component analysisdrotating the significantharacteristic vectors to an all-
positive representation, a statistical set of pigments results, shown in Fig(rki$ statistical set of pigments witiredict
the 100 measurements to averageAE ,, of 0.8 and amaximum of 1.8.The degree ofmetamerisni? expressed irCIE94
units, is 0.1 on average with a maximum of #ce aprinting system idefined andspectrallymodeledthe optimal ink
set can be determined that minimizes metamerism compared with the statistical pigment set.

5. SYSTEM EVALUATION

Once the spectral-based multimedia system has been developed, quality metrics are required. These should include CIE94 color
difference metrie®, special indices of metamerigit* indices of color inconstantyand indices that include the human
visual system’s spatial properti€s’
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Figure 7. Measured spectral reflectance factors of 10x10 grid sampling a landscape painting.
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Figure 8. Statistical colorants representing a painfihg.

6. CONCLUSIONS

Evaluating multimedia imaging as one of many applications of color science can result iparagigmfor color imaging,
multi-spectral-based imaging. However, developing multichannel multimedia systems willdékedg a dramatic increase in

cost (hardware, software, personnel training, data storage, image atcgsdf only anincrease incolor accuracy compared

with the current state of multimedia imaging was the benefit, a cost-benefit analysis would probably not refavbriable

outcome. Fortunately, there are many additional benefits that result from spectral data bases and color printing that minimizes
metamerism. Perhaps most important is the potentialefme andthereby archiveobjects using the modtindamental
definition, spectral reflectance factor. As an analogy, the U.S.’s National InstitS8tarafards an@echnology onlyprovides

spectral definitions for their standard-reference materials used for spectrophotomMatelsng spectraminimize theneed for
controlling lighting, viewing conditionsand observers. The benefits we take fantedwhen having our automobile
refinished after a collision or when we purchase clothing can be applied to multimedia.
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